

BULAWAYO

PRODUCTION OF AMYLASES BY SOLID STATE FERMENTATION USING <u>BACILLUS</u> SPECIES.

ΒY

SUKOLUHLE NDLOVU

N920784B

LISDARY		
NATIONAL UNIVERSITY OF SCIENCE		
and technology		
P.O. BOX 346 BULAWAYO		
	ZIMBABWE	RES
DATE	ACCESSION	CLASS No.
		QP
15/09/00	SC 1656	148 AD

148

NDL

A Project submitted in partial fulfillment of the requirements for the Bachelor of Applied Science Honours Degree (Applied Biology and Biochemistry) at the National University of Science and Technology.

PROJECT SUPERVISOR

PROFESSOR R.N. OKAGBUE

OCTOBER, 1995

92003011241

AB+E

NUST Library

ABSTRACT

Of the 11 amylolytic <u>Bacillus</u> species selected from a survey program, isolate Calls was the most potent producing a mean diameter starch clearing zone of 13.7 mm on nutrient starch agar plate. The isolate was used to produce amylase on a maize meal solid medium contained in a conical flask. With 5% inoculum, amylase production reached a maximum level in 4 days, with 165 units per gram (U/g). However, both inoculum size and maize meal particle size affected enzyme production. The enzyme yield from 10% inoculum was 198 U/g and was significantly different from the yield in 0.5% inoculum which was 123 U/g. Also, the amylase yield from small grain maize meal (maize rice) of 177 U/g differed significantly from the yield from large grain maize meal (samp) which was 1410/g. Therefore, under conditions of the study, the local <u>Bacillus</u> spp Calls was shown to be potentially useful in amylase production on solid maize meal substrates.

-**i**i -