	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES DEPARTMENT OF APPLIED BIOLOGY AND BIOCHEMISTRY	
THINK IN OTHER TERMS	BACHELOR OF SCIENCE HONOURS DEGREE IN APPLIED	
	BIOLOGY AND BIOCHEMISTRY	
	METABOLIC PROCESSES I SBB2102	
EXAMINATION PAPER		
DECEMBER 2017		

This examination paper consists of 2 pages

Time Allowed:	3 hours
Total Marks:	100
Special Requirements:	Calculator

INSTRUCTIONS TO CANDIDATES

- 1. Answer Four (4) Questions. Each question carries 25 marks.
- 2. Where a question contains subdivisions, the mark value for each subdivision is given in brackets.
- 3. Illustrate your answer where appropriate with large, clearly labelled diagrams.

1.(a)	In rat liver cells, the concentrations of ATP, ADP and P_i are 3.4 mM, 1.3 mM as mM respectively. Calculate the free energy change for hydrolysis of ATP given standard free energy of hydrolysis for ATP is -25KJ mol ⁻¹ , pH is 7.0 and temper 25°C.	nd 4.8 that the ature is (5 marks)
(b)) Explain how mammals use alanine in controlling blood sugar levels.	(20 marks)
2.(a)	Calculate the ATP molecules generated in the complete oxidation of dihydroxya phosphate.	acetone (8 marks)
(b)	Describe the activation, transportation and complete degradation of tridecanoic (C13:0).	acid. (17 marks)
3.(a)	Explain the biological advantage of uncoupling of oxidative phosphorylation.	(5 marks)
(b)	Discuss the regulation of the hexose monophosphate shunt.	(20 marks)
4.(a)	The tricarboxylic acid cycle, unlike glycolysis shuts down under anaerobic conc Explain.	litions. (5 marks)
(b)	Describe all the dehydrogenation reactions in the tricarboxylic acid cycle and di the control of the cycle.	iscuss (20 marks)
5.(a) (b)	Describe the composition of the α - ketoglutarate dehydrogenase complex. Compare and contrast glycogenesis and glycogenolysis.	(5 marks) (20 marks)
6. (a)	Describe the structure and mechanism of action of ATP synthase.	(12 marks)
(b)) Identify the main physiological function of the Cori cycle and describe the cycl	le. (13 marks)

END OF EXAMINATION

Copyright: National University of Science and Technology, 2017