

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CGHEMISTRY END OF FIRST SEMESTER EXAMINATIONS – APRIL/MAY 2009 INORGANIC CHEMISTRY I - SCH 1101

**TIME : THREE (3) HOURS** 

## **INSTRUCTIONS TO CANDIDATES:**

- 1. ANSWER <u>ALL QUESTIONS</u> FROM SECTION A AND <u>ANY THREE</u> FROM <u>SECTION B.</u> SECTION A CARRIES 40 MARKS AND EACH QUESTION IN SECTION B CARRIES 20 MARKS. MARKS ARE ALLOCATED IS INDICATED IN BRACKET.
- 2. START EACH QUESTION ON A NEW PAGE.
- 3. PERIODIC TABLE WILL BE PROVIDED ON REQUEST.

TOTAL MARKS = 100

## THIS QUESTION PAPER CONSISTS OF <u>THREE PRINTED PAGES</u> (ONE SIDE ONLY) INCLUDING THE TOP PAGE WITH THE INSTRUCTIONS.

## **SECTION A:**

| <ol> <li>(a) state (i) Pauli's excusion principle.</li> <li>(ii) Aufbau Principle</li> <li>(iii) Hund's rule.</li> </ol>                                        |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| (2 x 3                                                                                                                                                          | Marks)        |
| (b) How many electrons are there in a shell of Principal quantum num                                                                                            | her n?        |
| (b) now many electrons are there in a sherr of i interpar quantum num                                                                                           | (2 Marla)     |
|                                                                                                                                                                 | (2 Marks)     |
| (c) Draw the hybrid orbitals formed and their corresponding geometries for an atom having only s and p orbitals in its valence shell. Use carbon as an example. |               |
| -                                                                                                                                                               | (3 Marks)     |
| (d) Write Schrödinger equation based on wave-particle duality                                                                                                   |               |
| (d) white bein ouniger equation bused on wave particle duality.                                                                                                 | (5 Marks)     |
| 2 3                                                                                                                                                             | (J WIAIKS)    |
| (e) Which group has an ns np electron configuration?                                                                                                            |               |
|                                                                                                                                                                 | (2 Marks)     |
| (f) With the aid of electron configuration explain Kernal electrons, oc and valence electrons?                                                                  | tet electrons |
|                                                                                                                                                                 | (6 Marks)     |
| (g) According to De Broglie, how is the wave-length associated to the                                                                                           | mass and      |
| the velocity of particles of a matter?                                                                                                                          |               |
|                                                                                                                                                                 | (2 Marks)     |
| (h) What the following quantum numbers indicates                                                                                                                |               |
| (i) Princilal quantum number                                                                                                                                    |               |
| (ii) Azimuthal quantum number                                                                                                                                   |               |
| (iii) Magnetic quantum number and                                                                                                                               |               |
| (iv) Snin quantum number                                                                                                                                        |               |
| (1v) Spin quantum number $(2 + 4)$                                                                                                                              | Mortra)       |
| $(2 \times 4)$                                                                                                                                                  | Iviai KS)     |
| (1) what type of orbital is occupied by an electron with quantum num                                                                                            | ber $n = 5$   |
| and $l = 0$ . How many orbitals of this type are found and what are the                                                                                         | iey called?   |
|                                                                                                                                                                 | (3 marks)     |
| (i) Write Lewis structures for $H_2O_1CH_4$ CO <sub>2</sub>                                                                                                     |               |
| (),                                                                                                                                                             | (3 Marks)     |

## **SECTION B**:

2. (a) With the aid of a labelled diagram describe the experiment that provides evidence for the quantization of energy.

(7 Marks)

(b) Draw valence bond structure for benzene,  $C_6H_6$ . This molecule has a planar hexagonal geometry.



(5 Marks)

(c) How can you explain the electrical conductivity of a metal?

(3 Marks)

| (d) State Heisenberg's uncertainty principle.                                                                                       | (5 Marks)                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| 3. Describe and explain Bohr's atomic theory.                                                                                       | (3 Marks)                                       |  |
| (i) Use hydrogen atom as an example,                                                                                                |                                                 |  |
| (ii) Ose assumption and the spectra for your explanation.                                                                           | (20 Marks)                                      |  |
| 2+                                                                                                                                  |                                                 |  |
| 4. (a) What is the electron configuration of Zn and Zn <sup><math>-2</math></sup> ? What is the quantum $2^{+}$                     |                                                 |  |
| number that is lost by an atom of Zn when it forms Zn ?                                                                             | (6 Marks)                                       |  |
| (b) Calculate the wave-length of light that must be emitted by the hydrogen                                                         |                                                 |  |
| atom from the Principal quantum number 2 to 1.                                                                                      | (6 Marks)                                       |  |
| (c) Use the valence bond theory to account for the bonding and p                                                                    | blanar structure                                |  |
| of the NO <sub>3</sub> ion.                                                                                                         |                                                 |  |
| (d) Why is De Broglie's equation of greatest importance when a                                                                      | (6 Marks)                                       |  |
| the least massive particle such as electron?                                                                                        | ppned to                                        |  |
|                                                                                                                                     | (2 Marks)                                       |  |
| 5. (a) Draw the molecular orbital diagram for fluorine molecule $F_2$ .                                                             | Use 1s, 2s and 2p                               |  |
|                                                                                                                                     | (5 marks)                                       |  |
| (b) From the experimental data given below, draw Born-Haber c lattice energy of CsCl.                                               | ycle and calculate                              |  |
| The enthalpy of atomization of caesium: $\Delta H_1 = +79 \text{ kJ/m}$                                                             | ol                                              |  |
| The enthalpy of atomization of chlorine: $\Delta H_2 = + 121 \text{ kJ/m}$                                                          | ol                                              |  |
| The ionization energy of caesium: $\Delta H_3 = + 376 \text{ kJ}_3$                                                                 | /mol                                            |  |
| The electron affinity of chlorine: $\Delta H_4 = -348 \text{ kJ/m}$                                                                 | ol                                              |  |
| The lattice energy of caesium chloride to be calculated: $\Delta H$                                                                 | 5                                               |  |
| The standard enthalpy of formation of caesium chloride : $\Delta$                                                                   | $H_6 = -411 \text{ kJ/mol}$                     |  |
| (c) Lattice energy can not be measured directly but it can be cal<br>lattice energy expression, calculate lattice energy for caesiu | (10 Marks)<br>lculated. From the<br>m chloride. |  |
| The Avogadro constant: $6.022 \times 1023 \text{ mol}^{-1}$                                                                         |                                                 |  |
| The electronic charge: $1.6022 \times 10^{-19}$ C or J                                                                              |                                                 |  |
| The permittivity of a vacuum: $8.854 \times 10^{-12} \text{ F m}^{-1}$                                                              |                                                 |  |
| The Madelung constant: 1.763                                                                                                        |                                                 |  |
| Ine compressibility of crystal: $1.1005$<br>Ionic radii of Cs = 0.169 nm; Cl = 0.181 nm                                             |                                                 |  |
| Comment on the experimental and colorilated lattice energy                                                                          |                                                 |  |
| (5 marks)                                                                                                                           |                                                 |  |
| Frad of Orientian Dry on 111                                                                                                        | -                                               |  |

End of Question Paper!!!