

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY BACHELOR OF SCIENCE HONOURS DEGREE SUPPLEMENTARY EXAMINATIONS – AUGUST 2011 INORGANIC CHEMISTRY I – SCH 1101 FOR SCH AND TTE STUDENTS

TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES

This paper comprises five (5) questions. Attempt to answer <u>all</u> the questions. Each question carries twenty (20) marks. Start your answer to each question on a new page.

		answer to e	ach question on a	new page.		
1.	(a)	Define Hund's first rule and show how it is used to specify in detail the electron configurations of the elements from Li to Ne.				
		election configurations of the elements from Er to 14c.			(11 marks)	
	(b)	_	the following set of apple for each of the			
		nyona oronar.		(9 marks)		
2.	(a)	Using VSEPR Theory, predict the geometry of the following interhaloger species:				
		(i) BrF ₃	(ii) IF ₅	(iii) IBr ₂	(9 marks)	
	(b)		rature and pressure access hydrochloric (6 marks)			
	(c)	Write a balanced equation of the reaction between potassium hydroxide and phosphoric acid.				
		una phosphorie	ucia.		(5 marks)	
3.	(a)	Define the co-ordination number of a cation and an anion in a crystal lattice				
					(4 marks)	
	(b)	Which of the two cations Na ⁺ or Cs ⁺ would you expect to co-ordination number and why?			ect to have a higher	
					(2 marks)	

` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '				Draw Lewis diagrams and predict structures of dimethyl su and dimethylsulfoxide, [CH ₃] ₂ SO. How will the CSC bond	-			
			(d)	Indicate the type of hybridization (sp, sp2, etc) for the underlined atoms Cl ₂ C=O, MgF ₂ and PCl ₆				
					(6 marks)			
	4.		(a)	Define the following terms: (i) electron configuration of an atom (ii) microstate (iii) term (iv) multiplicity				
					(8 marks)			
	g							
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 1.113x10 ⁻¹⁰			
			(c)	Using noble gas configuration, write the electronic configuration of				
				Meitnerium ¹⁰⁹ Mt ²⁶⁶	(3 marks)			
		5.	(a)	Show with drawings the difference between cubic and hexagonal close packing in ionic compounds.				
					(8 marks)			
			(b)	Deduce the geometries of the following:				
			(i) I ₃	(ii) ClO_3^- (iii) ClO_3^+ (iv) Fe_2SeO (v) $IO_2F_2^-$	(vi) XeO ₃ F ₂			
					(12 marks)			

End of question Paper!!!