

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY
 BACHELOR OF SCIENCE HONOURS DEGREE SUPPLEMENTARY EXAMINATIONS - AUGUST 2011
 INORGANIC CHEMISTRY I - SCH 1101
 FOR SCH AND TTE STUDENTS
 TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES

This paper comprises five (5) questions. Attempt to answer all the questions. Each question carries twenty (20) marks. Start your answer to each question on a new page.

1. (a) Define Hund's first rule and show how it is used to specify in detail the electron configurations of the elements from Li to Ne .
(b) What geometric arrangement would you expect from the following set of hybrid orbitals: $\mathrm{dsp}^{2}, \mathrm{~d}^{2} \mathrm{sp}^{3}$ and dsp ${ }^{3}$? Give one example for each of the hybrid orbital.
(9 marks)
2. (a) Using VSEPR Theory, predict the geometry of the following interhalogen species:
(i) BrF_{3}
(ii) IF_{5}
(iii) IBr_{2}
(9 marks)
(b) Calculate the volume of hydrogen at standard temperature and pressure produced when 4.8 g of magnesium is dissolved in excess hydrochloric acid.
(6 marks)
(c) Write a balanced equation of the reaction between potassium hydroxide and phosphoric acid.
3. (a) Define the co-ordination number of a cation and an anion in a crystal lattice
(4 marks)
(b) Which of the two cations Na^{+}or Cs^{+}would you expect to have a higher co-ordination number and why?
(c) Draw Lewis diagrams and predict structures of dimethyl sulfide, $\left[\mathrm{CH}_{3}\right]_{2} \mathrm{~S}$, and dimethylsulfoxide, $\left[\mathrm{CH}_{3}\right]_{2} \mathrm{SO}$. How will the CSC bond angles differ?
(8 marks)
(d) Indicate the type of hybridization ($\mathrm{sp}, \mathrm{sp} 2$, etc) for the underlined atoms in $\mathrm{Cl}_{2} \underline{\mathrm{C}}=\mathrm{O}, \mathrm{MgF}_{2}$ and $\underline{\mathrm{PCl}}_{6}{ }^{-}$ (6 marks)
4. (a) Define the following terms:
(i) electron configuration of an atom
(ii) microstate
(iii) term
(iv) multiplicity
(b) Calculate the lattice energy for KI using the Born-Madelung approximation given that:
$\mathrm{N}=6.022 \times 10^{23}$ ion pairs $/ \mathrm{mol} \quad \mathrm{M}($ Madelung Constant $)=1.74756$ $\mathrm{Z}^{+}=1 \quad \mathrm{Z}^{-}=-1 \quad \mathrm{e}=1.602 \times 10^{-19} \mathrm{C} \quad 4 \pi \epsilon_{0}=1.113 \times 10^{-10}$ $\mathrm{C}^{2} \mathrm{~J}^{1} \mathrm{~m}^{-1} \quad \mathrm{r}_{0}=0.358 \mathrm{~nm} \quad$ Born Exponent $\mathrm{n}=9.5$ (9 marks)
(c) Using noble gas configuration, write the electronic configuration of Meitnerium
${ }^{109} \mathrm{Mt}$
(3 marks)
266
5. (a) Show with drawings the difference between cubic and hexagonal close packing in ionic compounds.
(8 marks)
(b) Deduce the geometries of the following:
(i) $\mathrm{I}_{3}{ }^{-}$
(ii) ClO_{3}^{-}
(iii) $\mathrm{ClO}_{3}{ }^{+}$
(iv) $\mathrm{Fe}_{2} \mathrm{SeO}$
(v) $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}$
(vi) $\mathrm{XeO}_{3} \mathrm{~F}_{2}$
(12 marks)

End of question Paper!!!

