

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY
 BACHELOR OF SCIENCE HONOURS DEGREE SUPPLEMENTARY EXAMINATIONS - AUGUST 2014
 INORGANIC CHEMISTRY I - SCH 1101
 TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES

This paper comprises four (4) questions. Attempt to answer all the questions. Each question carries twenty five (25) marks. Start your answer to each question on a new page.

1. (a) Write the electronic configurations of the following elements in the periodic table and explain any anomalies you observed: $\mathrm{Cr} ; \mathrm{Fe} ; \mathrm{Cu} ; \mathrm{Co}$; Ce.
(10 marks)
(b) What are the values of $\mathrm{n}, 1, \mathrm{~m}$ and s for the valence electron of a potassium atom in its ground state?
(4 marks)
(c) Define term and multiplicity in electronic microstructure theory. Show examples.
(6 marks)
(d) Specify the set of quantum numbers used to describe an orbital and state what values of each are possible.
(5 marks)
2. (a) The following are the approximate $1^{\text {st }}$ ionization enthalpies of noble gases in kJ/mol: He (2372); Ne (2081); Ar (1521); Kr (1351); Xe (1170); Rn (1037). Plot a graph of the above data and using electronic structure of atoms explain the trend shown in your graph.
(10 marks)
(b) Calculate the density of an air mix of nitrogen, argon and carbon dioxide, if the mass of the components is 15,50 and 35% respectively. ($\mathrm{M}_{\text {air }}=29$)
(4 marks)
(c) Draw the energy diagram of O_{2} and explain which properties can be derived from the diagram.
(6 marks)
(d) Formaldehyde has the Lewis structure:

Describe how the bonds in formaldehyde are formed in terms of overlaps of hybrid and unhybridized oribitals.
(5 marks)
3. (a) For each of the following five molecular species,
(i) count the number of valence electrons;
(ii) draw the Lewis Structures including all resonance structures;
(iii) identify the hybridization of the center atom;
(iv) draw out the shape of the molecule according to VSEPR; and
(v) name the molecular geometry.
(i) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(ii) ICl_{4}^{-}
(iii) NNN^{-}
(iv) OSF_{4}
(v) $\left[\mathrm{PtCl}_{6}\right]^{2-}$
(b) Balance the following reactions
(i) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\quad \mathrm{HNO}_{3}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\quad \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
(3 marks)
(c) In what relative positions would s and p orbitals have cancelling overlap? Show illustrations.
(d) Which of the following bonds is most polar: $\mathrm{S}-\mathrm{Cl}$, $\mathrm{S}-\mathrm{Br}, \mathrm{Se}-\mathrm{Cl}$, or $\mathrm{Se}-\mathrm{Br}$?
(3 marks)
(e) Draw two equivalent resonance structures for the formate ion, HCO_{2}^{-}.
(2 marks)
4. (a) Calculate the formula weight of:
(i) $\mathrm{Al}(\mathrm{OH})_{3}$ and
(ii) $\mathrm{CH}_{3} \mathrm{OH}$.
(4 marks)
(b) Write the balanced equations for the reaction that occurs when:
(i) ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$ and
(ii) methanol, $\mathrm{CH}_{3} \mathrm{OH}(I)$, burns in air.
(c) Calculate the percentage of nitrogen, by mass, in $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.
(3 marks)
(d) How many moles of sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ are in 508 g of NaHCO_{3} ?
(2 marks)
(e) Calculate the mass, in grams, of 0.433 mol of calcium nitrate.
(2 marks)
(f) Mesitylene, a hydrocarbon found in crude oil, has an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{4}$ and an experimentally determined molecular weight of 121 amu . What is its molecular formula?
(4 marks)
(g) Ethylene glycol, used in automobile antifreeze, is $38.7 \% \mathrm{C}, 9.7 \% \mathrm{H}$, and $51.6 \% \mathrm{O}$ by mass. Its molar mass is $62.1 \mathrm{~g} / \mathrm{mol}$.
(i) What is the empirical formula of ethylene glycol?
(ii) What is its molecular formula?
(6 marks)

End of question Paper!!!

