

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY <u>DEPARTMENT OF APPLIED CHEMISTRY</u> <u>END OF FIRST SEMESTER EXAMINATIONS – APRIL/MAY 2009</u> <u>PHYSICAL CHEMISTRY FOR ENGINEERS – SCH 1120</u> <u>TIME: (3) THREE HOURS</u>

INSTRUCTIONS TO CANDIDATES

MATERIAL

Reduction potential tables, graph papers.

INSTRUCTIONS TO STUDENTS

Answer <u>All</u> questions in section A and <u>Any Three</u> questions in Section B. Answer each question on a FRESH page.

$$\begin{split} R &= 8.314 \text{ JK}^{-1}\text{mol}^{-1} = 0.08205 \text{ dm}^3 \text{atm}\text{K}^{-1}\text{mol}^{-1}.\\ F &= \text{eN}_{\text{A}} = 96500 \text{ C mol}^{-1}\\ 1 \text{ atm} &= 760 \text{ torr} = 760 \text{mmHg} = 101 \text{ 325 Pa}\\ \text{lnx} &= 3.303 \text{logx} \end{split}$$

<u>SECTION A</u> Answer ALL questions. Each question carries 10 marks

- (a) The molar conductivity of 0.1M KCI(aq) at 298K is 129 S cm² mol⁻¹. The measured resistance in a conductivity cell was 28.44Ω. When the same cell contained 0.05M NaOH(aq) the resistance was 31.6Ω. Calculate the molar conductivity of NaOH(aq) at that temperature and concentration. [4 marks]
 - (b) The limiting molar conductivities of KCl, KNO₃, and AgNO₃ at standard conditions are 149.9 S cm² mol⁻¹, 145.0 S cm² mol⁻¹, and 133.4 S cm² mol⁻¹, respectively. What is the limiting molar conductivity of AgCl at this temperature? [4 marks]
 - (c) State the two effects which are collectively known as the Retardation effects in strong electrolytes. [2 marks]
- 2. (a) State the four common kinds of electrodes used in electrochemical cells. [4 marks]
 - (b) Write the equation for the interfacial potential difference for each of them [4 marks]
 - (c) State the two types of concentration cells and highlight the major difference between them [2 marks]

- 3. (a) Compare and contrast Langmuir and BET adsorption isotherms?

 [6 marks]
 (b) State the three basic assumptions of the Langmuir's adsorption isotherm.
 [4 marks]
- 4. (a) What is a colligative property [2 marks]
 - (b) State the four colligative properties of dilute solutions and for any two of them, name the analytical methods in which they are used [4 marks]
 - (c) Calculate the osmotic pressure of a sucrose solution of concentration 0.05 moldm⁻³ at 303K.

[4 marks]

SECTION B

Answer ONLY THREE questions from this section.

5.	(a)	The cell Mg Mg SO ₄ (aq, $a = 1$) CuSO ₄ (aq, $a = 1$) Cu was set up in a laboratory experiment.				
		Calculate	(i) the e.m.f of the cell at standard condition (ii) the value of ΔG_r^{θ} for the cell reaction (iii) the equilibrium constant for the cell reac	is action.		
		Which electro	de is more positive, and which way do electr	ons flow? [8 marks]		
	(b)	Write the cell (i) Sn SnCl ₂ ((ii) Pt Fe ³⁺ (aq	reactions and half-reactions for the following aq) $\parallel MnCl_2(aq), HCl(aq) \mid MnO_2(s) \mid Pt$), Fe ²⁺ (aq) $\parallel Sn^{4+}(aq) \mid Sn^{2+}(aq) \mid Pt$	g cells: [6 marks]		
	(c)	Using electron following read (i) $Sn(s) + Sn$ (ii) $Sn(s) + 2A$	the potentials, calculate the equilibrium constant etions at 25°C. $Cl_4(aq) \longrightarrow 2SnCl_2(aq)$ $AgCl(s) \longrightarrow SnCl_2(aq) + 2Ag(s)$	ant for the		
7.	The data below relates to the adsorption of carbon monoxide on charcoal at 27 Confirm that they fit the Langmuir isotherm, and find: (a) The constant k (b)The volume corresponding to complete coverage					

In each case V has been corrected to 1 atm

P/Torr	100	200	300	400	500	600	700
V/cm ³	10.2	18.6	25.5	31.5	36.9	41.6	46.1

The Langmuir's isotherm: $\Theta = kP/(1+kP)$

[20 marks]

- 8. (a) At 353K the vapour pressures of two liquids A and B which are completely miscible and form an ideal solution are 757 and 66 mmHg, respectively. For an equimolar mixture $[x_A = x_B = 0.5]$ calculate the total vapour pressure and the mole fraction of A in the vapour phases. Assume that the mixture follows Raoult's Law. [4 marks]
 - (b) Calculate the estimate mole fractions (x_A, x_B, y_A, y_B) in the respective phases at equilibrium when the total pressure of the solution is 500mmHg [8 marks]
 - (c) Calculate the estimate mole fractions $(x_A, x_{B,}, y_B)$ in the respective phases, and also the total vapour pressure when y_A (the mole fraction of A in the vapour phase at equilibrium with the liquid mixture) is fixed at 0.8. [8 marks]
- 9. (a) The figure below is a pressure composition diagram a mixture of two volatile liquids A and B. Copy the diagram and use it as you describe in detail what will be observed when the pressure of a system of composition $z_A = a$ is reduced from P₁ to P₅ along the Isopleth, At each pressure indicated give the number of phases, the equilibrium composition of the phases (use notation of your choice), and the relative amounts of the phases

[10 marks]

3

(b)	Write the Phase rule and define each of the three variable terms in it				
		[8 marks]			
(d)	What is a constituent in a system?	[2 marks]			

END OF QUESTION PAPER !!