

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY <u>DEPARTMENT OF APPLIED CHEMISTRY</u> <u>BACHELOR OF SCIENCE HONOURS DEGREE</u> <u>END OF FIRST SEMESTER EXAMINATIONS – FEBRUARY 2010</u> <u>PHYSICAL CHEMISTRY FOR ENGINEERS – SCH 1120</u> <u>TIME: (3) THREE HOURS</u>

INSTRUCTIONS TO CANDIDATES

MATERIAL Reduction potential tables, graph papers

INSTRUCTIONS TO STUDENTS

Answer <u>All</u> questions in section A and <u>Any Three</u> questions in Section B. Answer each question on a FRESH page.

$$\begin{split} R &= 8.314 \text{ JK}^{-1}\text{mol}^{-1} = 0.08205 \text{ dm}^3 \text{atm}\text{K}^{-1}\text{mol}^{-1}.\\ F &= eN_A = 96500 \text{ C mol}^{-1}\\ 1 \text{ atm} = 760 \text{ torr} = 760\text{mm}\text{Hg} = 101 \text{ 325 Pa}\\ \ln x &= 3.303\text{logx} \end{split}$$

<u>SECTION A</u> Answer ALL questions. Each question carries 10 marks

- 1. (a) The conductivity at 25° C of a saturated aqueous solution of strontium sulphate is 1.48×10^{-2} Sm⁻¹ while that of the water from which the solution was made is 1.5×10^{-4} Sm⁻¹. The limiting molar conductivities of $\frac{1}{2}$ Sr²⁺ and $\frac{1}{2}$ SO₄²⁻ are 5.95×10^{-3} Sm²mol and 8.00×10^{-3} Sm²mol⁻¹, respectively. What is the solubility of strontium sulphate in water at 25° C. [3 marks]
 - (b) In a tube of 8mm diameter, the boundary between aqueous solution of hydrochloric acid and sodium chloride moves with a velocity of 0.085 mms⁻¹ when the current is 5mA. The concentration of the hydrochloric acid solution is 0.01 moldm⁻³. Calculate the transport number of the hydrogen ions [3 marks]

$$[t = \frac{FcAh}{Q}]$$

- (c) To show the difference between weak and strong electrolytes, sketch the graphical representation of the variation of:
 (i) Molar conductivity with concentration
 (ii) Molar conductivity with dilution
 - (ii) Molar conductivity with dilution [3 marks]
- 2. (a) What is the difference between a primary reference electrode and a secondary reference electrode. Give at least one example for each kind of electrode

[2 marks]

- (b) Name the two special kinds of electrodes mentioned under the study of the common types of electrodes. [4 marks]
- (c) Calculate the equilibrium constant for the disproportionation reaction,

 $2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}(aq) \text{ at } 298K.$ [3 marks]

- (d) At 298K the standard redox potentials of the electrodes, Ptl Ce⁴⁺, Ce³⁺ and Ptl Fe³⁺, Fe²⁺, are 1.61V and 0.77V, respectively. When these two electrodes are brought together the reaction comes to equilibrium. Write the spontaneous reaction and calculate the equilibrium constant [3 marks]
- 3. (a) From the principle of light scattering, explain why the sky is blue during the day [2 marks]

Disperse system	Disperse phase	Dispersion	Examples
		medium	
(a)	(b)	(c)	toothpaste
	(d)	Solid	
(e)	(f)	(g)	
	(h)	(i)	Fog
(j)	Gas	Solid	
	(k)	(1)	
(m)	liquid	Solid	
(n)	(0)		milk

(b) Copy and complete the following table:

[8 marks]

(a) A solution of 5 x 10^{-3} kg acetone, (CH₃)₂CO, in 1.000kg of glacial acetic acid, CH₃CO₂H, froze at a temperature 0.32K below the freezing point of the pure solvent. Calculate the freezing-point constant K_{fus} for glacial acetic acid [3 marks]

$$[K_{fus} = \frac{RT_{fus}^2 M_1}{\Delta H_{fus}^0 1000} kgmol^{-1}K ; \Delta T = K_{fus}m]$$

- (b) A solution of 1.8×10^{-3} kg of a substance of high molecular weight in 1.00kg of toluene, C₆H₅CH₃, has an asmotic pressure of 4.0 mm of toluene (density 860 kgm⁻³ at 298K). Estimate the molecular weight of the substance [4 marks]
- (c) What do the following terms refer to:
 (i) Cryoscopy
 (ii) Ebullioscopy
 (iii)Osmometry

4.

[3 marks]

SECTION B

Answer ONLY THREE questions from this section.

- 5. (a) The molar conductivity of 0.1M KCl (aq) at 298K is 129 Scm⁻¹mol⁻¹. The measured resistance in a conductivity cell was 28.44 Ω . The resistance was 31.60 Ω when the same cell contained 0.05M NaOH(aq). Calculate the molar conductivity of NaOH(aq) at the concentration. [4 marks]
 - (b) With the aid of a diagram outline the moving boundary method for determining transport numbers of ions in solution [6 marks]
 - (c) State the four common electrodes, and for each write the reaction of the equilibrium and the equation for the interfacial potential difference [10 marks]
- 6. (a) At 298K the vapour pressures of two liquids A and B which are completely miscible and form an ideal solution are 0.20 atm and 0.35 atm, respectively. For an equimolar mixture $[x_A = 0.4]$ calculate the total vapour pressure and the mole fraction of A in the vapour phases. [4 marks]
 - (b) Calculate the estimate mole fractions (x_A, x_B, y_A, y_B) in the respective phases at equilibrium when the total pressure of the solution is 0.35atm [8 marks]
 - (c) Calculate the estimate mole fractions (x_A, x_B, y_B) in the respective phases, and also the total vapour pressure when y_A (the mole fraction of A in the vapour phase at equilibrium with the liquid mixture) is fixed at 0.85. [8 marks]
- 7. (a) Derive the Langmuir's isotherm. Include the steps for its conversion to the linear form.

[6 marks]

(b) The Langmuir isotherm reduces to three distinct equations with the change of pressure. Write these equations, showing the derivation wherever possible. [10 marks]

(c) State the three assumptions that the Langmuir isotherm is based on. [4 marks]

8. (a) What is a colloid and what is its major physical property?

[2 marks]

(b) Outline the formation of an electric double layer on the surface of a colloidal particle. State the prime role of the electric double layer and

explain how this role is performed

[6 marks]

- (c) With the means of a diagram, show the effect of added solute on the chemical potential of a liquid solvent as a function of temperature. Clearly show the changes that are responsible for the two named colligative properties [6 marks]
- (d) Calculate the ionic strength and the mean activity coefficient of 0.001 molkg⁻¹ CaCl₂(aq) at 25^oC. log $\gamma_{\pm} = -|z_{-}z_{+}|AI^{\frac{1}{2}}$, $I = \frac{1}{2}\sum z_{i}^{2}m_{i}$, $A = 0.509 / (molkg^{-1})^{\frac{1}{2}}$

[6 marks]

END OF QUESTION PAPER !!