

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED CHEMISTRY

PHYSICAL CHEMISTRY 1 FOR TCE STUDENTS

SCH1120

First Semester Examination Paper

December 2014

This examination paper consists of 6 pages
Time Allowed: 3 hours

Total Marks: 100
Examiner's Name: Dr. Stephen Majoni
Useful information: $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; 1 \mathrm{~atm}=101325 \mathrm{~Pa} ; 1 \mathrm{bar}=1 \times 10^{5} \mathrm{~Pa}$

INSTRUCTIONS

1. Answer $A L L$ questions in section A and any three (3) questions in section B
2. Each question in section A carries 10 marks and in section B carries 20 marks

MARK ALLOCATION

QUESTION	MARKS
A1.	10
A2.	10
A3.	10
A4.	10
B1	20
B2	20
B3	20
B4	20
TOTAL	100

Copyright: National University of Science and Technology, 2014

SECTION A

1. (a) A 237 g piece of molybdenum, initially at $100.0^{\circ} \mathrm{C}$, was dropped into 244 g of water at $10.0^{\circ} \mathrm{C}$. When the system came to thermal equilibrium, the temperature was $15.3^{\circ} \mathrm{C}$. What is the specific heat capacity of molybdenum? [6 marks]
(b) Molar heat capacity of a substance for a process occurring at constant pressure is greater than at constant volume, discuss. [4 marks]
2. The equilibrium constant for the reaction of hydrogen with iodine is 57.0 at 700 K .

$$
H_{2}(g)+I_{2}(g) \underset{k_{f}}{\rightleftharpoons} 2 H I(g)
$$

a) Is the rate constant k_{f} for the formation of HI larger or smaller than the rate constant k_{r} for the decomposition of HI?
b) The value of k_{f} at 700 K is $1 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. What is the value of k_{r} at the same temperature? [10marks]
3. (a) Write the equilibrium expression and calculate the equilibrium constant of the reaction $N_{2}(g)+3 H_{2}(g) \rightleftarrows 2 N H_{3}(g)$, given that $\Delta_{R} G^{\theta}=32.90 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$.
[5 marks]
(b) A compound X undergoes two simultaneous first order reactions as follows: $\mathrm{X} \rightarrow$ Y with rate constant k_{1} and $\mathrm{X} \rightarrow \mathrm{Z}$ with rate constant k_{2}. The ratio of k_{1} / k_{2} at $40^{\circ} \mathrm{C}$ is 8.0 . What is the ratio at $300^{\circ} \mathrm{C}$? The frequency factors of the two reactions are the same.
4. (a)You are running the reaction $2 A+B \rightarrow 2 C+3 D$. Your lab partner has conducted the first two experiments to determine the rate law for the reaction by the method of initial rates.

Experiment \#	$[\mathbf{A}](\mathrm{M})$	$[\mathbf{B}](\mathrm{M})$
1	0.0250	0.0330
2	0.0500	0.0330

Presuming that you can measure the initial rate of each experiment, which of the following concentrations for Experiment 3 would help you to determine the rate law easily?
a) $[A]=0.0330 \mathrm{M} ;[B]=0.0330 \mathrm{M}$
b) $[A]=0.0125 \mathrm{M}$; $[B]=0.0500 \mathrm{M}$
c) $[A]=0.0250 \mathrm{M} ;[B]=0.0400 \mathrm{M}$
d) $[A]=0.0250 \mathrm{M} ;[B]=0.0330 \mathrm{M}$
e) $[A]=0.0500 \mathrm{M} ;[B]=0.0330 \mathrm{M}$ [4 marks]
(b) At 298.15 K and a particular pressure, a real gas has a fugacity coefficient Θ of 2.00. At this pressure, what is the difference in the chemical potential of this real gas and an ideal gas? [6 marks]

SECTION B

1. Ammonia decomposes when heated according to the following equation

$$
\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{2}(\mathrm{~g})+\mathrm{H}(\mathrm{~g})
$$

The data below was obtained from an experiment.

Time (hours)	$\left[\mathrm{NH}_{3}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$
0	8.00×10^{-7}
25	6.75×10^{-7}
50	5.84×10^{-7}
75	5.15×10^{-7}

Evaluate the order of the reaction and the rate constant
2. (a) Pure iodine $(105 \mathrm{~g})$ is dissolved in 325 g of CCl_{4} at $65^{\circ} \mathrm{C}$. Given that the vapour pressure of CCl_{4} at this temperature is 531 mm Hg , what is the vapour pressure of the $\mathrm{CCl}_{4}-\mathrm{I}_{2}$ solution at $65^{\circ} \mathrm{C}$ (assume I_{2} does not contribute to the vapour pressure)
[8 marks]
(b) The reaction between nitrous oxide and ozone occur as follows

$$
\mathrm{NO}(g)+\mathrm{O}_{3}(g) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

Given that the activation energy for the forward reaction is 10 kJ and the $\Delta_{\mathrm{r}} H^{0}$ is 200 kJ .
(i) Sketch a potential-energy diagram for the reaction of nitric oxide with ozone.
(ii) What is the activation energy for the reverse reaction? Label your diagram appropriately.
3. (a) Using the following data, calculate $\Delta_{R} G^{0}$ and K at 298.15 K for the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ;$ Based on the value of K , do you expect the mixture to consist mainly of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ or $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$;

$$
\Delta_{f} G^{o}
$$

$\mathrm{CO}(\mathrm{g})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{H}_{2}(\mathrm{~g})$
$-137.2 \mathrm{~kJ} / \mathrm{mol}$
$-237.1 \mathrm{~kJ} / \mathrm{mol}$
$-394.4 \mathrm{~kJ} / \mathrm{mol}$ 0
[8 marks]
(b) K_{c} for the reaction $I_{2}(g) \rightleftarrows 2 I(g)$ is 5.6×10^{-12} at 500 K ; A mixture has $\left[\mathrm{I}_{2}\right]=$ 0.020 M and $[\mathrm{I}]=5.6 \times 10^{-12} \mathrm{M}$. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to attain equilibrium?
[6 marks]
(c) The equilibrium constant for the reaction $N_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ is 170 . If $0.170 \mathrm{M} \mathrm{N}_{2} \mathrm{O}_{4}$ is placed in a flask at $25^{\circ} \mathrm{C}$, what is the percentage of the original $\mathrm{N}_{2} \mathrm{O}_{4}$ that has reacted?
4. (a) Given that the reaction of $\mathrm{CH}_{3} \mathrm{OH}$ and HBr is believed to occur via the following mechanism with a rate law given by:

$$
\text { rate }=k\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]
$$

Step 1: Fast: $\quad \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{2}^{+}$
Step 2: Slow: $\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$

Is the above mechanism valid, and what is the order of reaction with respect to the reacting species and the overall order of the reaction?
(b) The temperature of 0.5 moles of a solid is raised from 300 to 900 K at a fixed pressure. Given that the molar heat capacity of the solid is given by the following expression.
$C_{p, m} /\left({J K^{-1}}^{m o l^{-1}}\right)=16.88+4.77 \times 10^{-3} T-8.54 \times 10^{5} \mathrm{~T}^{2}$
i) Calculate $\Delta \mathrm{H}$, and $\Delta \mathrm{S}$
ii) Would it be safe to assume that the heat capacity is constant over the entire temperature range and maintains its value at 300 K . [12 marks]

