

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED CHEMISTRY

PHYSICAL CHEMISTRY 1 FOR TCE STUDENTS

SCH1120

First Semester Examination Paper

December 2014

This examination paper consists of 6 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Dr. Stephen Majoni

Useful information: $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$; 1 atm = 101 325 Pa; 1 *bar* = 1×10⁵ *Pa*

INSTRUCTIONS

1. Answer ALL questions in section A and any three (3) questions in section B

2. Each question in section A carries 10 marks and in section B carries 20 marks

MARK ALLOCATION

QUESTION	MARKS
A1.	10
A2.	10
A3.	10
A4.	10
B1	20
B2	20
B3	20
B4	20
TOTAL	100

Copyright: National University of Science and Technology, 2014

SECTION A

- (a) A 237 g piece of molybdenum, initially at 100.0 °C, was dropped into 244g of water at 10.0 °C. When the system came to thermal equilibrium, the temperature was 15.3°C. What is the specific heat capacity of molybdenum? [6 marks]
 - (b) Molar heat capacity of a substance for a process occurring at constant pressure is greater than at constant volume, discuss. [4 marks]
- 2. The equilibrium constant for the reaction of hydrogen with iodine is 57.0 at 700 K.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
$$k_r$$

- a) Is the rate constant k_f for the formation of HI larger or smaller than the rate constant k_r for the decomposition of HI?
- b) The value of k_f at 700 K is1 × 10⁻⁵M⁻¹s⁻¹. What is the value of k_r at the same temperature? [10marks]
- - (b) A compound X undergoes two simultaneous first order reactions as follows: $X \rightarrow Y$ with rate constant k_1 and $X \rightarrow Z$ with rate constant k_2 . The ratio of $\frac{k_1}{k_2}$ at 40°C is 8.0. What is the ratio at 300°C? The frequency factors of the two reactions are the same. [5 marks]

Copyright: National University of Science and Technology, 2014

4. (a)You are running the reaction $2A + B \rightarrow 2C + 3D$. Your lab partner has conducted the first two experiments to determine the rate law for the reaction by the method of initial rates.

Experiment #	[A] (M)	[B] (M)
1	0.0250	0.0330
2	0.0500	0.0330

Presuming that you can measure the initial rate of each experiment, which of the following concentrations for Experiment 3 would help you to determine the rate law easily?

a) $[A] = 0.0330 M; [B] = 0.0330 M$	
b) $[A] = 0.0125 M; [B] = 0.0500 M$	
c) $[A] = 0.0250 M; [B] = 0.0400 M$	
d) $[A] = 0.0250 M; [B] = 0.0330 M$	
e) $[A] = 0.0500 M; [B] = 0.0330 M$	[4 marks]

(b) At 298.15 K and a particular pressure, a real gas has a fugacity coefficient Θ of 2.00. At this pressure, what is the difference in the chemical potential of this real gas and an ideal gas?

Copyright: National University of Science and Technology, 2014

SECTION B

1. Ammonia decomposes when heated according to the following equation

$$NH_3(g) \rightarrow NH_2(g) + H(g)$$

The data below was obtained from an experiment.

Time (hours)	$[\mathrm{NH}_3] \ (\mathrm{mol} \ \mathrm{L}^{-1})$
0	8.00×10^{-7}
25	6.75×10^{-7}
50	5.84×10 ⁻⁷
75	5.15×10^{-7}

Evaluate the order of the reaction and the rate constant

[20 marks]

- 2. (a) Pure iodine (105 g) is dissolved in 325 g of CCl₄ at 65 °C. Given that the vapour pressure of CCl₄ at this temperature is 531 mm Hg, what is the vapour pressure of the CCl₄-I₂ solution at 65°C (assume I₂ does not contribute to the vapour pressure) [8 marks]
 - (b) The reaction between nitrous oxide and ozone occur as follows

$$NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$$

Given that the activation energy for the forward reaction is 10 kJ and the $\Delta_r H^0$ is - 200 kJ.

- (i) Sketch a potential-energy diagram for the reaction of nitric oxide with ozone.
- (ii) What is the activation energy for the reverse reaction? Label your diagram appropriately. [12 marks]

Copyright: National University of Science and Technology, 2014

3. (a) Using the following data, calculate $\Delta_R G^0$ and K at 298.15 K for the reaction

 $CO(g) + H_2O(l) \rightleftharpoons CO_2(g) + H_2(g)$; Based on the value of K, do you expect the mixture to consist mainly of CO(g) and H₂O(l) or CO₂(g) and H₂(g);

	$\Delta_f G^o$
CO(g)	-137.2 kJ/mol
$H_2O(l)$	-237.1 kJ/mol
$CO_2(g)$	-394.4 kJ/mol
$H_{2}\left(g\right)$	0

[8 marks]

(b) K_c for the reaction $I_2(g) \rightleftharpoons 2I(g)$ is 5.6 × 10⁻¹² at 500K; A mixture has $[I_2] = 0.020$ M and $[I] = 5.6 \times 10^{-12}$ M. Is the reaction at equilibrium (at 500K)? If not, which way must the reaction proceed to attain equilibrium? [6 marks]

- (c) The equilibrium constant for the reaction N₂O₄(g) ≈ 2NO₂(g) at 25°C is 170. If
 0.170 M N₂O₄ is placed in a flask at 25°C, what is the percentage of the original N₂O₄ that has reacted?
- (a) Given that the reaction of CH₃OH and HBr is believed to occur via the following mechanism with a rate law given by:

$$rate = k[CH_3 OH][H^+][Br^-]$$

Step 1: Fast: $CH_3 OH + H^+ \rightleftharpoons CH_3 OH_2^+$

Step 2: Slow:
$$CH_3OH_2^+ + Br^- \rightarrow CH_3Br + H_2O$$

Is the above mechanism valid, and what is the order of reaction with respect to the reacting species and the overall order of the reaction? [8 marks]

Copyright: National University of Science and Technology, 2014

(b) The temperature of 0.5 moles of a solid is raised from 300 to 900 K at a fixed pressure. Given that the molar heat capacity of the solid is given by the following expression.

$$C_{p,m}/(JK^{-1}mol^{-1}) = 16.88 + 4.77 \times 10^{-3}T - 8.54 \times 10^{5}T^{2}$$

- i) Calculate ΔH , and ΔS
- ii) Would it be safe to assume that the heat capacity is constant over the entire temperature range and maintains its value at 300 K. [12 marks]

END OF QUESTION PAPER !!!

Copyright: National University of Science and Technology, 2014