

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED CHEMISTRY

PHYSICAL CHEMISTRY FOR ENGINEERING

SCH1120

First Semester Examination Paper

December 2016

This examination paper consists of 5 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Dr. S. Majoni

INSTRUCTIONS

1. Answer $A L L$ questions in section A and any three (3) questions in section B
2. Each question in section A carries 10 marks and in section B carries 20 marks

ADITIONAL INFORMATION

1. $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2. 1 bar $=1.0 \times 10^{5} \mathrm{~Pa}$
3. 1 atm $=101325 \mathrm{~Pa}$

MARK ALLOCATION

QUESTION	MARKS
A1.	$\mathbf{1 0}$
A2.	$\mathbf{1 0}$
A3.	$\mathbf{1 0}$
A4.	$\mathbf{1 0}$
B1	$\mathbf{2 0}$
B2	$\mathbf{2 0}$
B3	$\mathbf{2 0}$
B4	$\mathbf{2 0}$
TOTAL POSSIBLE	$\mathbf{1 0 0}$

SECTION A:

1) At $25^{\circ} \mathrm{C}$, a 0.10 M KCl solution has a conductance (G) of 0.01178 S and molar conductivity of $128.96 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
a) Explain what is meant by the term "calibration of a conductance cell" and discuss its importance in conductivity measurements
[3 Marks]
b) Find the cell constant for the conductance cell
[3 Marks]
c) Using the above cell, the conductance of a 0.050 M solution of an electrolyte was measured to be 0.00824 S , what is the molar conductivity of the electrolyte?
[4 Marks]
2) a) The oxidation of gaseous nitrogen can occur via the following reaction $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \square \quad 2 \mathrm{NO}(g)$. Given that
$\Delta_{R} G^{o}$ for the reaction at $298 \mathrm{~K}=173.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
i) Write down the equilibrium constant expression for the reaction.[1 Mark]
ii) Calculate $\Delta_{f} G^{o}$ for NO at 298 K
[3 Marks]
iii) Calculate the thermodynamic equilibrium constant of the reaction at 298 K
[3 Marks]
b) Complete the table below. In cell reaction column state whether the cell reaction is spontaneous, non-spontaneous, or at equilibrium.
[3 Marks]

\mathbf{E}	$\Delta \mathbf{G}$	Cell reaction
>0		
	>0	
$=0$		

3) Determine the ionic strength of each of the following solutions
a) 0.15 m KCl
[1 Mark]
b) $0.15 \mathrm{~m} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
[2 Marks]
c) $0.15 \mathrm{~m} \mathrm{CdCl}_{2}$
[2 Marks]
d) A mixture containing $0.15 \mathrm{~m} \mathrm{CdCl}_{2}$ and 0.15 m KCl
[2 Marks]
e) The resultant solution formed by adding 15 mL of a 0.15 M HCl solution to 25 mL of a 0.125 M NaOH solution.
4) a) With the aid of a diagram discuss how a catalyst functions. [6 marks]
b) Two catalysts, catalyst A and catalyst B, are compared for their catalytic activity for the reaction $R \rightarrow P$. When catalyst A is present it takes 12.1 seconds for R to change from 2 to 0.5 moles and when catalyst B is present it takes 20 seconds for R to decrease from 5 to 2.5 moles at the same temperature and with the same quantities of catalyst.

Which is the more effective catalyst for the reaction concerned? [4 marks]

SECTION B:

1) A mixture consisting of 10 mol of $\mathrm{CO}(\mathrm{g}), 1.0 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g})$ and $0.1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ at 300 K is passed over a catalyst in a reactor at a total pressure $=11.1 \mathrm{bar}$. Given that $\Delta_{R} G^{0}$ for the reaction $=22.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$:
a) Evaluate whether the product is being produced in the reaction presented below.

$$
\begin{equation*}
\mathrm{CO}(g)+2 \mathrm{H}_{2}(g)=\mathrm{CH}_{3} \mathrm{OH}(g) \tag{5Marks}
\end{equation*}
$$

b) Evaluate the effects of doubling (i) the reaction pressure and (ii) the reaction temperature.
[8 Marks]
c) At what temperature is the reaction at equilibrium for conditions of pressure and composition in " 1 a " and " 1 b "
d) Evaluate the equilibrium constants for the temperatures in 1 c above?
[2 Marks]
2) It has been postulated that the catalytic decomposition of ozone occurs via the following steps:

Step 1. $N O(g)+O_{3}(g) \xrightarrow{k_{1}} N O_{2}(g)+O_{2}(g)$
Step 2. $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \xrightarrow{k_{2}} \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
a) Write down the overall reaction, identify (if any) the catalyst(s) and intermediate(s).
b) Using steady state approximation, show that the rate law can be obtained by using any of the species involved in the chemical reaction.
[12 Marks]
c) In view of the above reaction, discuss measure that have been put in place to minimize the impacts of the identified catalyst in "a" above.
[3 Marks]
3) a) Calculate $\Delta \mathrm{G}^{0}$ and K for the disproportionation reaction given below.[5 Marks] $\mathrm{Hg}_{2}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Hg}^{2+}(\mathrm{aq})+\mathrm{Hg}(\mathrm{l})$

Given the following data

$$
\begin{array}{ll}
2 \mathrm{Hg}^{2+}(a q)+2 e^{-} \rightarrow \mathrm{Hg}_{2}^{2+}(a q) & \mathrm{E}^{0}=0.92 \mathrm{~V} \\
\mathrm{Hg}_{2}^{2+}(a q)+2 e^{-} \rightarrow 2 \mathrm{Hg}(l) & \mathrm{E}^{0}=0.85 \mathrm{~V}
\end{array}
$$

b) In a study of the reaction of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ with methyl iodide $\left(\mathrm{CH}_{3} \mathrm{I}\right)$, in a benzene solution the following set of initial reaction rates were measured at $25^{\circ} \mathrm{C}$ for the different initial concentrations of the two reactants.
$\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$
$\left[\mathrm{CH}_{3} \mathrm{I}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$
Rate ($\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$)
1.0×10^{-4}
1.0×10^{-4}
7.5×10^{-7}
2.0×10^{-4}
1.0×10^{-4}
3.0×10^{-6}
2.0×10^{-4}
3.0×10^{-4}
9.0×10^{-6}
i) Determine the rate expression for this reaction.
[8 marks]
ii) What is the overall order of reaction?
[1 marks]
c) Define the terms triple point and critical point, and using relevant diagrammes explain what happens when a solid is heated at a pressure which is lower than its triple point.
[6 marks]
4) a) Slow cookers are devices which cook food slowly. Discuss their principle of operation given that the rate of cooking food increases with cooking temperature.
[7 marks]
b) Discuss why it is common practice in countries where snow is a common occurrence for the road maintenance departments to spray salt on roads covered by snow.
[8 marks]
c) One of the assumptions of the Langmuir adsorption isotherm relates to monolayer coverage, discuss what this means and list the other assumptions. [5 marks]

END OF QUESTION PAPER!!!

