

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY SUPPLEMENTARY EXAMINATIONS – AUGUST 2010 INORGANIC CHEMISTRY II – SCH 1201 TIME: (3) THREE HOURS

INSTRUCTIONS TO CANDIDATES

MATERIAL

Periodic table.

INSTRUCTIONS TO STUDENTS

Answer \underline{All} questions in section A and $\underline{Any\ Three}$ questions in Section B.

Answer each question on a FRESH page.

SECTION A Answer ALL questions. Each question carries 10 marks

- 1. (a) What do you understand by the terms: Outer-coordination sphere and Inner-coordination sphere? [4 marks]
 - (b) Draw the structure of the following complex:

Bis(ethylenediamine)cobalt(III)- μ -amido- μ -superoxobis(ethylenediamine)cobalt(III) [2 marks]

- (c) Name three common geometries associated with the six-coordination.

 Draw the structure of one of them [4 marks]
- 2 .(a) Use chemical reactions to illustrate the four systems of defining acids and bases. In your equations, indicate the acids and the bases. [8 marks]
 - (b) State any two major properties of solvents that are considered when selecting a solvent. [2 marks]
- 3. (a) What do you understand by the term *trans-metal*?

[2 marks]

(b) Name any four metals that are part of the Platinum group metals.

[4 marks]

- (c) Carbon forms both discrete polyatomic molecules, extended and giant structures
 - (i) Name one discrete polyatomic molecule of carbon.
 - (ii) What is *catenation*?

[4 marks]

- 4. (a) With the aid of a d-orbital spitting diagrams, show which dⁿ electron configurations are capable of giving both low spin and high spin configurations in an octahedral ligand field [8 marks]
 - (b) Bonding. What is metal-to-ligand bonding? What is the other type of bonding? [2 marks]

SECTION B

Answer ONLY THREE questions from this section.

- 5. (a) Calculate, in units of Δ_0 , the LFSEs of the following high-spin ions in their octahedral complexes V^{3+} , Cr^{2+} , Cu^{2+} , Zn^{2+} , Sc^{3+} , Ni^{2+} [12 marks]
 - (b) Draw the metal atom or ion orbitals that are able to take part in pi-bonding in complexes [8 marks]
- 6. (a) Substitution reactions of Octahedral complexes. There are four main mechanisms that have been established for these reactions. Name these four mechanisms and use the substitution of ligand X by ligand Y in the ML₅X complex to illustrate each. [8 marks]
 - (b) Name the following complex compounds and ions:

 (i) [Pt(NH₃)₅Cl]Cl₃, (ii) Mg[Ni(CN)₄], (iii) Fe(H₂O)₃Cl₃,

 (iv) [Fe(CO)₆]Cl₃ [6 marks]
 - (c) Write the appropriate formula for the named complex:
 - (i) Potassium pentacyanonitrosylferrate(III)
 - (ii) Sodium tetrachloroferrate(II) dehydrate
 - (iii) Pentaamminecobalt(III) pentacyanoaquaferrate(II) [6 marks]
- 7. (a) In discussing solubility of solutes in solvents there are three main cases. State these cases, and briefly explain them. [10 marks]
 - (b) HCl, HNO₃, and H₂SO₄ are acids. How can these acids be distinguished according to acid strength? [3 marks]
 - (c) What is a superacid? Give two important uses of superacids.

 [3 marks]
 - (d) Sulphuric acid is one of the most common protic acids. The equilibria of pure sulphuric acid is known to be complex, write down its self-ionization reaction and any three hydration-dehydration equilibrium reactions.

[4 marks]

END OF QUESTION PAPER!!!