

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY
SUPPLEMENTARY EXAMINATIONS - AUGUST 2010
INORGANIC CHEMISTRY II - SCH 1201
TIME: (3) THREE HOURS
INSTRUCTIONS TO CANDIDATES
MATERIAL
Periodic table.
INSTRUCTIONS TO STUDENTS
Answer All questions in section A and Any Three questions in Section B.
Answer each question on a FRESH page.

SECTION A Answer ALL questions. Each question carries 10 marks

1. (a) What do you understand by the terms: Outer-coordination sphere and Inner-coordination sphere?
[4 marks]
(b) Draw the structure of the following complex:

Bis(ethylenediamine)cobalt(III)- μ-amido- μ-superoxobis(ethylenediamine)cobalt(III)
[2 marks]
(c) Name three common geometries associated with the six-coordination. Draw the structure of one of them
[4 marks]
2 .(a) Use chemical reactions to illustrate the four systems of defining acids and bases. In your equations, indicate the acids and the bases. [8 marks]
(b) State any two major properties of solvents that are considered when selecting a solvent.
[2 marks]
3. (a) What do you understand by the term trans-metal?
[2 marks]
(b) Name any four metals that are part of the Platinum group metals.
[4 marks]
(c) Carbon forms both discrete polyatomic molecules, extended and giant structures
(i) Name one discrete polyatomic molecule of carbon.
(ii) What is catenation?
4. (a) With the aid of a d-orbital spitting diagrams, show which d^{n} electron configurations are capable of giving both low spin and high spin configurations in an octahedral ligand field
[8 marks]
(b) Bonding. What is metal-to-ligand bonding? What is the other type of bonding?
[2 marks]

SECTION B

Answer ONLY THREE questions from this section.

5. (a) Calculate, in units of Δ_{0}, the LFSEs of the following high-spin ions in their octahedral complexes $\mathrm{V}^{3+}, \mathrm{Cr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Sc}^{3+}, \mathrm{Ni}^{2+} \quad[12$ marks]
(b) Draw the metal atom or ion orbitals that are able to take part in pi-bonding in complexes
[8 marks]
6. (a) Substitution reactions of Octahedral complexes. There are four main mechanisms that have been established for these reactions. Name these four mechanisms and use the substitution of ligand X by ligand Y in the $\mathrm{ML}_{5} \mathrm{X}$ complex to illustrate each.
(b) Name the following complex compounds and ions:
(i) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2}\right] \mathrm{Cl}_{3}$, (ii) $\mathrm{Mg}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$, (iii) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}$,
(iv) $\left[\mathrm{Fe}(\mathrm{CO})_{6}\right] \mathrm{Cl}_{3}$
[6 marks]
(c) Write the appropriate formula for the named complex:
(i) Potassium pentacyanonitrosylferrate(III)
(ii) Sodium tetrachloroferrate(II) dehydrate
(iii) Pentaamminecobalt(III) pentacyanoaquaferrate(II) [6 marks]
7. (a) In discussing solubility of solutes in solvents there are three main cases. State these cases, and briefly explain them.
[10 marks]
(b) $\quad \mathrm{HCl}, \mathrm{HNO}_{3}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are acids. How can these acids be distinguished according to acid strength?
[3 marks]
(c) What is a superacid? Give two important uses of superacids.
[3 marks]
(d) Sulphuric acid is one of the most common protic acids. The equilibria of pure sulphuric acid is known to be complex, write down its self-ionization reaction and any three hydration-dehydration equilibrium reactions.
[4 marks]
END OF QUESTION PAPER!!!
