

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY
SUPPLEMENTARY EXAMINATION -AUGUST 2013
INORGANIC CHEMISTRY II - SCH 1201
TIME: (3) THREE HOURS
INSTRUCTIONS TO CANDIDATES
MATERIAL
Periodic Table
INSTRUCTIONS TO STUDENTS
Answer All questions in section A and All questions in Section B.
Answer each question on a FRESH page.

SECTION A Answer ALL questions. Each question carries 10 marks

1 .(a) In naming coordination compounds prefixes such as cis-, fac-, trans- and mer- are used. In what circumstances are these prefixes used? Use a simple example to illustrate your answer.
[6 marks]
(b) Draw the structure of the following complex:

Di- μ-bromobis(diaquaplatinumt(II)) Nitrate
[2 marks]
(c) Name the following three geometric arrangements common for coordination number 6.
[2 marks]
2 .(a) What two properties are generally important in a solvent for electrochemical reactions.
[2 marks]
(b) State with satisfactory definitions the four concepts of classifying acids and bases. Show the overlaps between the concepts
[8 marks].
3. (a) Why are the chemical consequences of partially filled d orbitals so much more pronounced for d-block elements than the consequences of partially filled forbitals for the f-block elements? Within the f-block also give a comparison and contrast of the two groups of elements in this respect
[6 marks]
(b) Carbon, Lead, Germanium, and Tin are elements in the same group. Explain why CH_{2} is unstable while PbCl_{2} is stable. Compare also the stabilities of GeCl_{2} and SnCl_{2}.
[4 marks]
4. (a) Why are tetrahedral complexes usually not low spin while their octahedral counterparts may be high spin?
[2 marks]
(b) What is the relationship the ligand's field strength and the type of spin?
[2 marks]
(c) With the aid of orbital splitting diagrams, show which d^{n} electron configurations are capable of giving both low spin and high spin configurations in an octahedral ligand field.

SECTION B

Answer ALL questions from this section.

Question number five (5) must be answered on the tear-off sheet which must be detached from the question paper and attached to the answer book.
5. The diagram on the tear-off sheet shows the d-orbital splitting in various geometries of complex compounds.
(a) In each section of the diagram from (a) to (f) identify and label the dorbitals in their energy levels
(b) In each section of the diagram from (a) to (f) state the geometry (or geometries) that coincides with the pattern of d-orbital splitting.
[8 marks]
(c) The symbols $\boldsymbol{e}, \boldsymbol{t}$, and \boldsymbol{a} are symmetry labels defined in the group theory of orbitals. State what each symbol signifies.
[4 marks]
6. (a) Substitution reactions of Octahedral complexes. There are four main mechanisms that have been established for these reactions. Name these four mechanisms and use the substitution of ligand X by ligand Y in the $\mathrm{ML}_{5} \mathrm{X}$ complex to illustrate each.
[4 marks]
(b) Name the following complex compounds and ions:
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(ii) $\mathrm{Na}\left[\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{H}\right]$
(iii) $\left[\left(\mathrm{NH}_{3}\right)_{5}-\mathrm{NC}-\mathrm{Co}(\mathrm{CN})_{5}\right]$
(iv) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
(c) Discuss the two general mechanisms for electron transfer reactions. Use reaction equations to illustrate your answers.
[6 marks]
7. (a) $\mathrm{HBr}, \mathrm{HClO}_{4}$, and HI are relatively strong Bronsted acids. For these acids to be distinguished according to acid strength they have to be studied in solvents such as sulphuric acid. What is a Bronsted acid? Write the Bronsted equilibrium for the solvent sulphuric acid indicating the strongest acid and strongest base that can exit in it.
(b) Identify the Lewis acids and bases in the following reactions and predict the products. Briefly justify your answers.
i. $\quad \mathrm{FeCl}_{3}+\mathrm{CI}^{-}$
ii. $\quad \mathrm{BF}_{3}+\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$
iii. $\mathrm{NaH}+\mathrm{NH}_{3}$
iv. $\mathrm{KH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
v. $\mathrm{I}^{-}+\mathrm{I}_{2}$
vi. $\quad \mathrm{Na}\left[: \mathrm{SnCI}_{3}\right]+(\mathrm{CO})_{5} \mathrm{MnCI}$
[12 marks]
(c) Separate the following solvents into protic and non-protic groups. For the protic group, write the possible Bronsted and Lowry pairs.
$\mathrm{NH}_{3}, \mathrm{HCI}, \mathrm{BrF}_{3}, \mathrm{IF}_{5}, \mathrm{CI}_{3} \mathrm{PO}, \mathrm{AsCI}_{3}, \mathrm{CH}_{3} \mathrm{CONH}_{2}$.

P.T.O

Tear off this page and attach it to your answer sheet.
Candidate's Registration No: \qquad

Fig: Splitting of d-orbital energy levels in ligand fields of different symmetries.

