

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY SUPPLEMENTARY EXAMINATION –AUGUST 2013 INORGANIC CHEMISTRY II – SCH 1201 TIME: (3) THREE HOURS

INSTRUCTIONS TO CANDIDATES

MATERIAL Periodic Table

<u>INSTRUCTIONS TO STUDENTS</u> Answer <u>All</u> questions in section A and <u>All</u> questions in Section B. Answer each question on a FRESH page.

<u>SECTION A</u> Answer ALL questions. Each question carries 10 marks

1	.(a)	In naming coordination compounds prefixes such as <i>cis</i> -, <i>fa</i> <i>mer</i> - are used. In what circumstances are these prefixes use simple example to illustrate your answer.	ac-, <i>trans-</i> and ed? Use a [6 marks]
	(b)	Draw the structure of the following complex:	
		Di-µ-bromobis(diaquaplatinumt(II)) Nitrate	[2 marks]
	(c) Name the following three geometric arrangements common for $\cos \theta$		r coordination
	nu	mber o.	[2 marks]
2	.(a)	What two properties are generally important in a solvent for electrochemical reactions.	or [2 marks]
	(b)	State with satisfactory definitions the four concepts of class and bases. Show the overlaps between the concepts	sifying acids [8 marks].
3.	(a)	Thy are the chemical consequences of partially filled d orbitals so much ore pronounced for d-block elements than the consequences of partially led f orbitals for the f-block elements? Within the f-block also give a omparison and contrast of the two groups of elements in this respect [6 marks]	
	(b)	Carbon, Lead, Germanium, and Tin are elements in the same Explain why CH_2 is unstable while $PbCl_2$ is stable. Compare stabilities of $GeCl_2$ and $SnCl_2$.	ne group. re also the [4 marks]

- 4. (a) Why are tetrahedral complexes usually not low spin while their octahedral counterparts may be high spin? [2 marks]
 - (b) What is the relationship the ligand's field strength and the type of spin? [2 marks]
 - (c) With the aid of orbital splitting diagrams, show which dⁿ electron configurations are capable of giving both low spin and high spin configurations in an octahedral ligand field. [6 marks]

SECTION B

Answer ALL questions from this section.

Question number five (5) must be answered on the tear-off sheet which must be detached from the question paper and attached to the answer book.

- 5. The diagram on the tear-off sheet shows the d-orbital splitting in various geometries of complex compounds.
 - (a) In each section of the diagram from (a) to (f) identify and label the dorbitals in their energy levels [8 marks]
 - (b) In each section of the diagram from (a) to (f) state the geometry (or geometries) that coincides with the pattern of d-orbital splitting. [8 marks]
 - (c) The symbols *e*, *t*, and *a* are symmetry labels defined in the group theory of orbitals. State what each symbol signifies. [4 marks]
- 6. (a) Substitution reactions of Octahedral complexes. There are four main mechanisms that have been established for these reactions. Name these four mechanisms and use the substitution of ligand X by ligand Y in the ML₅X complex to illustrate each. [4 marks]
 - (b) Name the following complex compounds and ions: (i) $[Co(NH_3)_5Cl]Cl_2$ (ii) Na[Fe(CO)_4H] (iii) $[(NH_3)_5 - NC - Co(CN)_5]$ (iv) $(NH_4)_2[Ni(C_2O_4)_2(H_2O)_2]$

[8 marks]

(c) Discuss the two general mechanisms for electron transfer reactions. Use reaction equations to illustrate your answers. [6 marks]

7.

(a) HBr, HClO₄, and HI are relatively strong Bronsted acids. For these acids to be distinguished according to acid strength they have to be studied in solvents such as sulphuric acid. What is a Bronsted acid? Write the Bronsted equilibrium for the solvent sulphuric acid indicating the strongest acid and strongest base that can exit in it.

[2 marks]

- (b) Identify the Lewis acids and bases in the following reactions and predict the products. Briefly justify your answers.
 - i. $FeCI_3 + CI^-$
 - ii. $BF_3 + N(CH_3)_3$
- iii. $NaH + NH_3$
- iv. $KH + CH_3CH_2OH$
- $v. \quad I^{-}+I_2$
- vi. $Na[:SnCI_3] + (CO)_5MnCI$

[12 marks]

 (c) Separate the following solvents into protic and non-protic groups. For the protic group, write the possible Bronsted and Lowry pairs. NH₃, HCI, BrF₃, IF₅, CI₃PO, AsCI₃, CH₃CONH₂. [6 marks]

END OF QUESTION PAPER!!!

