NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF APPLIED CHEMISTRY

END OF SECOND SEMESTER EXAMINATIONS – APRIL/MAY 1999

ANALYTICAL CHEMISTRY I - SCH 1206

TIME: THREE HOURS

INSTRUCTIONS TO CANDIDATES

Answer All questions from Section A and Any Three questions from Section B. Total marks = 100.

SECTION A

- 1. Calculate the ionic strength of a solution of equal volumes of IMHCl and 0,5M NaOH. (5 marks)
- 2. Calculate the concentration of all the species present in the dissociation of $0.5M\ H_2C_2O_4$.

$$K_1 = 5.6 \times 10^{-2}$$

$$K_2 = 5.4 \times 10^{-5}$$

(10 marks)

3. Which substances are acids or bases in aqueous solution according to the Bronsted and Lowry Theory.

(6 marks)

- 4. Calculate the concentration of H⁺ and OH⁻ ions in a solution containing 25ml 0,2M CH₃COOH and 15ml 0,1M CH₃COONa (9 marks)
- 5. In the analysis of a lead ore the following results were obtained (%) 14,50; 14,43, 14,54; 14,45; 14,44; 14,52; 14,58; 14,40; 14,25 14,19.

Given that $Q_2 = 0.42$ for n=10 at 95% confidence level, show that 14,25 and 14,58 must be either rejected or retained. Calculate the mean and the Standard deviation.

(10 marks)

SECTION B

Answer any three questions from Section B. Each question in Section B carries 20 marks.

- 1. (a) Draw a titration curve, when 100.00ml 0,10M Na₂CO₃ is titrated with 0,10MHCl, Calculate the pH when the following volumes of acid have been added:
 - (i) 50.00ml
 - (ii) 91.00ml
 - (iii) 98.00ml
 - (iv) 109.00ml
 - (v) 150.00ml
 - (vi) 191.00ml
 - (vii) 199.00ml
 - (b) A base of mass 0,534.1g containing 92% NaOH and 8% impurities was dissolved in a volumetric flask of volume 100,00ml. Calculate the molar concentration of the solution if 15,00ml of the solution was titrated with 19,50ml acid HCl.
- 2. (i) Why is the complexmetric titration of CO²⁺; Zn²⁺; Ni²⁺ and Cd²⁺ done in an ammonium buffer solution.
 - (ii) Why is the determination of cations with a charge of +3 and +4 with EDTA carried out in acidic media.
 - (iii) 1,703g of Al(NO₃) ₃.nH₂O was dissolved in 200,0ml to a 20,0ml aliquot was added Na₂Mg EDTA. In the titration of Mg²⁺ 17,45ml 0,02507M EDTA was used. Calculate the percentage (%) concentration of Al(NO₃) ₃ in the sample.
- 3. (i) Derive the formulae for calculating pCl when titrating 0.1M NaCl with:
 - (a) Ag NO₃

(b) $Hg_2 (NO_3)_2$

At the end point

(ii) From a Chrome-fluorine concentrate of mass 2,500g, a 100,00ml solution of fluorine was prepared and 25,00ml was titrated with 12,25ml 0,001667M KAl(SO₄)₂

According to the reaction;

 $6\text{NaF} + \text{Kal}(\text{SO}_4)_2 + \text{NaCl} = \text{Na}_3\text{AlF}_6 + \text{KCl} + 2\text{Na}_2 \text{ SO}_4$. Calculate the percentage of fluorine in the ore.

- 4. (i) Which reagents and why are they added to the solution containing Fe²⁺ and Cl before titrating with KMnO₄?
 - (ii) Uranium was reduced to U^{3+} and then oxidized to U^{4+} . Calculate the concentration of uranium in the solution if 25,00ML was titrated with 18,35ml of 0,08520N KMnO₄ (eqv. = 1/5)?

END OF QUESTION PAPER!!!!