

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY BACHELOR OF SCIENCE HONOURS DEGREE DEPARTMENT OF APPLIED CHEMISTRY END OF SEMESTER TWO EXAMINATIONS – JUNE 2010 ANALYTICAL CHEMISTRY I – SCH 1206 TIME: 3 HOURS

<u>INSTRUCTIONS TO CANDIDATES</u> Answer <u>ANY FOUR</u> questions from this question paper. Total Marks – 100

- 1. (a) Describe three systematic errors in analytical chemistry and discuss how each can be minimised. [15 marks]
 - (b) The following results were obtained for replicate determinations of the percentage of chloride in a solid chloride sample: 59.83, 60.04, 60.45, 59.88, 60.33, 60.24, 60.28, 59.77.

Calculate:

- (i) the arithmetic mean,
- (ii) the standard deviation, and
- (iii) the relative standard deviation (in percent) [10 marks]
- 2. (a) At evaluated temperatures, NaHCO₃ is converted quantitatively to Na_2CO_3 :

 $2NaHCO_3(s) \longrightarrow Na2CO_3(s) + CO_2(g) + H_2O(g)$

Ignition of a 0.3592-g sample of an antacid tablet containing NaHCO₃ and non-volatile impurities yielded a residue weighing 0.2362g. Calculate the percent purity of the sample. [15 marks]

(b) Explain the difference between:

(i)	precipitation and co-precipitation.	[5 marks]
-----	-------------------------------------	-----------

- (ii) Nucleation and particle growth [5 marks]
- 3. (a) Volumetric analysis requires the use of standard solution. What are the ideal properties of a standard solution? [12 marks]

	(b)	A 0.8040-g sample of an iron ore is dissolved in acid. The iron is then reduced to Fe^{2+} and titrated with 47.22mL of 0.02242 M KMnO ₄ solution. Calculate the results of this analysis in terms of:		
		 (i) % Fe (55.847 g/mol) and (ii) % Fe₃O₄ (231.54 g/mol) 		
		The reaction of the analyte with the reagent is described by the equation:		
		$MnO_{4}^{+} + 5Fe^{2} + 8H^{+} \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_{2}O$	[13 marks]	
4.	(a)	Briefly describe or define (with specific examples)		
		 (i) A weak electrolyte (ii) Auto protolysis (iii) A strong acid 	[5 marks] [5 marks] [5 marks]	
	(b)	Calculate the ionic strength of a solution that is:		
		(i) 0.10M in FeCl ₃ and 0.20M in FeCl ₂ (ii) 0.060M in Ln(NO ₃) ₃ and 0.030 M in Fe(NO ₃) ₂	[5 marks] [5 marks]	
5.	(a)	What factors affect end-point sharpness in an acid/base titration?	[6 marks]	
	(b)	What variables can cause the pH range of an indicator to shift?	[6 marks]	
	(c)	What is a buffer solution and what are its properties?	[6 marks]	
	(d)	Why does the change on the surface of precipitation particles chan equivalence point in a titration?	ge sign at [7 marks]	

End of question Paper!!!