

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY I

SCH 1206

Supplementary Examination Paper

August 2015

This examination paper consists of 3 printed pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr Audacity Maringa

INSTRUCTIONS

- 1. Answer any FOUR questions in this question paper.
- 2. Each question carries 25 marks.

MATERIAL NEEDED: Periodic Table

MARK ALLOCATION

QUESTION	MARKS
1	25
2.	25
3.	25
4.	25
5	25
TOTAL POSSIBLE MARKS	100

Copyright: National University of Science and Technology, 2015

SCH 1206

1. (a). Explain the difference between: (i) Homogeneous and heterogeneous material (ii) Specific and selectivity in a chemical analysis Laboratory sample and replicate sample (iii) [6 marks] What is the difference between a real sample and a standard sample? Give (b). examples. [7 marks] What are the factors that complicate a typical analysis? [3 marks] (c). (d). Systematic errors can occur due to: Instrumentation (i) Method (ii) Human factors (iii) Describe each of these, giving an example and state how these errors can be avoided. [9 marks] 2. (a) Define the following: (i) Absolute errors (ii) Mean Median [6 marks] (iii) (b) Explain the differences between precision and accuracy. [4 marks] (c) Consider the following set of replicate measurements: A: 9.5, 8.5, 9.1, 9.3, 9.1 B: 0.972, 0.943, 0.986, 0.937, 0.954 Calculate: Mean (i) Median (ii) (iii) Range Standard deviation (iv) Co-efficient of variation [15 marks] (v) 3. Define autoprotolysis. [2 marks] (a) [2 marks] (b) Explain the common ion effect.

Copyright: National University of Science and Technology, 2015

SCH 1206

	(c)	State the Le-Chatelier's principle and give an example.	[4 marks]	
	(d)	Write down the dissociation constant expression for the following equations:		
		(i) $HNO_2 + H_2O \rightleftharpoons H_3O^+ + NO_2^-$ (ii) $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	[4 marks]	
	(e)	What is K _b for the equilibrium reaction?		
		$CN^- + H_2 0 \rightleftharpoons HCN + OH^-$		
		$K_a = 6.2 \times 10^{-10}$ for HCN	[4 marks]	
	(f)	Calculate the solubility of $Ba(IO_3)_2$ in a solution prepared by mixing 200 mL of 0.0100 M $Ba(NO_3)_2$ with 100 mL of 0.100 M $NaIO_3$. The solubility-product constant for $Ba(IO_3)_2$ is 1.57 x10 ⁻⁹ . [9 marks]		
4.	(a)	Explain briefly the salt effect.	[3 marks]	
	(b)	Define the terms ionic strength, activity and activity coefficient.	[6 marks]	
	(c)	State the properties of activity coefficient.	[5 marks]	
	(d)	Explain why the solubility of an ionic compound increases as the i a solution increases.	onic strength of [2 marks]	
	(e)	Calculate the ionic strength of:		
		 (i) 0.1 M Na₂SO₄ (ii) 0.1 M KNO₃ (iii) 0.1 M NaCl 	[9 marks]	
5.	(a)	Briefly explain back titration.	[3 marks]	
	(b)	What is a secondary standard?	[2 marks]	
	(c)	Describe the factors that are ideal for a standard solution.	[8 marks]	
	(d)	A 100 mL sample of brackish water was ammoniacal and the sulp contained was titrated with 16.47 mL of 0.0231 M AgNO ₃ . The ar reaction is: $2Ag^- + S^{2-} \rightarrow Ag_2S$	sh water was ammoniacal and the sulphide it 16.47 mL of 0.0231 M AgNO ₃ . The analytical $2^2 \rightarrow Ag_2S$	
		Calculate the concentration of H ₂ S in water in parts per million.	[12 marks]	

Copyright: National University of Science and Technology, 2015

SCH 1206