NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF APPLIED SCIENCES
DEPARTMENT OF APPLIED CHEMISTRY
ANALYTICAL CHEMISTRY I
SCH 1206
Second Semester Examination Paper
May 2016

This examination paper consists of 4 pages
Time Allowed: 3 hours
Total Marks:
100
Examiner's Name: Dr. A. Maringa

INSTRUCTIONS

1. Answer ALL questions in section A and any three (3) questions in section B
2. Each question in section A carries 10 marks and each question in section B carries 20 marks

MARK ALLOCATION

QUESTION	MARKS
SECTION A: 1.	$\mathbf{1 0}$
2.	$\mathbf{1 0}$
3.	$\mathbf{1 0}$
4.	$\mathbf{1 0}$
SECTION B: 5	$\mathbf{2 0}$
6	20
7	20
8	20
TOTAL POSSIBLE MARKS	$\mathbf{1 0 0}$

Copyright: National University of Science and Technology, 2016

SECTION A

1. a) Distinguish between qualitative analysis and quantitative analysis. Give examples.
[4 marks]
b) Write equilibrium-constant expressions $K c$ for each of the following reactions.

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{3}(g) \rightleftharpoons \mathrm{NO}_{2}(g)+\mathrm{NO}(g) \\
& 2 \mathrm{H}_{2} \mathrm{~S}(g) \rightleftharpoons 2 \mathrm{H}_{2}(g)+\mathrm{S}_{2}(g) \\
& \mathrm{PCl}_{3}(g)+3 \mathrm{NH}_{3} \rightleftharpoons \mathrm{P}\left(\mathrm{NH}_{2}\right)_{3}(g)+3 \mathrm{HCl}(g)
\end{aligned}
$$

[6 marks]
2. a) State the Le-Chatelier's principle.
b) Predict the direction of reaction when H_{2} is removed from a mixture in which the following equilibrium has been established:

$$
H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g)
$$

c) Calculate the standard deviation and the relative standard deviation for the following data:

Measurement No.	Value (g)
1	16.7724
2	16.7735
3	16.7722
4	16.7756
5	16.7729
6	16.7716
7	16.7720
8	16.7733

3. a) Explain briefly the salt effect.
b) State the properties of activity coefficient.
c) Explain why the solubility of an ionic compound increases as the ionic strength of a solution increases.
4. a) Distinguish between determinate and indeterminate errors.
b) Calculate the ionic strength of a solution that is:
(i) $\quad 0.030 \mathrm{M} \mathrm{in} \mathrm{FeSO}_{4}$.
(ii) $\quad 0.30 \mathrm{M}$ in FeCl_{3} and 0.20 M in FeCl_{2}.
(iii) 0.05 M in KNO_{3} and 0.1 M in $\mathrm{Na}_{2} \mathrm{SO}_{4}$. [6 marks]

SECTION B

5. a) Describe 5 factors which affect the rate of a chemical reaction.
[10 marks]
b) An analyst determines that the analytical balance he used in a given analytical test is wrongly calibrated. Is this a determinate or an indeterminate error? Explain. [4 marks]
c) A mixture of 1.20 mol of $\mathrm{X}, 2.10 \mathrm{~mol}$ of Y , and 0.950 mol of Z is found at equilibrium in a 1.00 L vessel. (a) Calculate K. (b) If the same mixture had been found in a 2.00 L reaction mixture, would the value of K have been the same? Explain.
6. a) Calculate the pH of $0.100 \mathrm{M} \mathrm{NH}_{3} . K_{b}=1.8 \times 10^{-5}$
b) Calculate the value of the equilibrium constant at a certain temperature for the following reaction if there are present at equilibrium 0.10 mol of $\mathrm{N}_{2}, 0.070 \mathrm{~mol}$ of O_{2}, and $1.4 \times$ $10^{-3} \mathrm{~mol}$ of NO_{2} in 2.0 L .
c) Is $\mathrm{NH}_{4} \mathrm{Cl}$ solution in water acidic or basic? Explain.
d) Calculate the hydronium ion concentration of a 0.250 M acetic acid solution also containing 0.190 M sodium acetate. $\mathrm{Ka}=1.81 \times 10^{-5}$.
7. a) Describe the factors that are ideal for a standard solution.
b) A 100 mL sample of brackish water was ammoniacal and the sulfide it contained was titrated with 16.47 mL of $0.0231 \mathrm{M} \mathrm{AgNO}_{3}$. The analytical reaction is

$$
2 \mathrm{Ag}^{-}+\mathrm{S}^{2-} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}
$$

Calculate the concentration of $\mathrm{H}_{2} \mathrm{~S}$ in water in parts per million.
8. a) Make a distinction between thermodynamic and concentration equilibrium. [4 marks]
b) Calculate the solubilities of the following compounds in a 0.0167 M solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ using (1) activities and (2) molar concentrations:

(i) $\mathrm{AgIO}_{3 .}$	$[4$ marks $]$
(ii) $\mathrm{Mg}(\mathrm{OH})_{2}$.	$[4$ marks $]$
(iii) BaSO	
(iv) $\mathrm{La}\left(\mathrm{IO}_{3}\right)_{3}$.	$[4$ marks $]$

