

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY SUPPLEMENTARY EXAMINATIONS – JULY 2014 GENERAL CHEMISTRY – SCH 1217 FOR SBB AND ESH

TIME – 3 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. ANSWER ALL QUESTIONS FROM SECTION A AND ANY THREE FROM SECTION B. SECTION A CARRIES 40 MARKS AND EACH QUESTION IN SECTION B CARRIES 20 MARKS. MARKS ARE ALLOCATED IS INDICATED IN BRACKET []
- 2. START ANSWERING EACH QUESTION ON A NEW PAGE. (NOT EACH PART OF A QUESTION)

INFORMATION TO CANDIDATES

1. YOU ARE REMINDED FOR THE NEED TO USE CLEAR PRESENTATION
AND GOOD ENGLISH

TOTAL MARKS = 100

THIS QUESTION PAPER CONSISTS OF **FOUR (4)** PRINTED PAGES (ON ONE SIDE ONLY) INCLUDING THE TOP PAGE WITH THE INSTRUCTIONS.

SECTION A:

1)

a) With the aid of a diagram discuss how a catalyst function

[6 marks]

b) Two catalysts, catalyst A and catalyst B, are compared for their catalytic activity for the reaction. When catalyst A is present it takes 10s for A to change from 2 to 0.5 moles and when catalyst B is present it takes 20s for A to decrease from 5 to 2.5 moles at the same temperature and with the same quantities of catalyst.

Which catalyst is more active for the reaction concerned?

[4 marks]

2)

a) Hydrogen and iodine react according to the equation

Suppose 1.00 mol $H_{2(g)}$ and 2.00 mol $I_{2(g)}$ are placed in a vessel. How many moles of substances are present in the mixture when it comes to equilibrium at 458 °C. The equilibrium constant at this temperature is 49.7 [10 marks]

3)

- a) Draw the orbital diagram for the electron configuration of oxygen, atomic number 8. How many unpaired electrons does an oxygen atom possess? [3 marks]
- b) Write the electron configuration for phosphorus, element 15. [3 marks]
- c) How many unpaired electrons does a phosphorus atom possess? [2 marks]
- d) What is the characteristic valence electron configuration of the group 7A elements, the halogens? [2 marks]

4)

- a) Write balanced equations for:
 - a.i) Solid mercury (II) sulphide decomposing into its component elements when heated.
 - a.ii) Aluminium metal combining with oxygen in the air.
 - a.iii) When methanol, CH₃OH(*l*), is burned in air.
- b) Calculate the percentage of nitrogen, by mass, in Ca(NO₃)₂.
- c) What is the molar mass of glucose, $C_6H_{12}O_6$? (10 marks)

2

SECTION B:

1) The Haber-Bosch process for the production of ammonia is one of the key industrial processes in developed countries.

Temperature (K)								
298	-91.8	-198.12						
800	-107.4	-225.4						
1300	-112.4	-228.0						

- a) At what temperature(s) is the reaction spontaneous in the forward direction?
- b) Calculate the mole fraction of ammonia in the equilibrium mixture at each of the three temperatures. At what temperature is the mole fraction of NH₃ the largest?

[20 marks]

2)

a) Calculate the enthalpy change for the following reactions at the two temperatures (400 K and 1000 K).

values (kJ/mol) at the different two temperatures are as follows

-77

0 -393

-242

-110

0

	-89	0	-394	-248	-111	0			
							[10 marks]		
b)	Complete the following nuclear equations. Write the mass number, atomic number, and symbol for the remaining particle								
	(b.i.1.a.i)								
		(b.i.1.a.ii)							
	(b.i.1.a.iii)								
	(b.i.1.a.iv) (b.i.1.a.v)								
		(0.1.1.a.v)	,				[10 marks]		
3)							[10 marks]		
a)	Which family of elements is characterized by an ns^2np^2 electron configuration in the outermost occupied shell? Explain your reasoning and give examples of such elements								
							[4 marks]		
b)	Write the	e electron con	nfiguration	for (a) Ca ²⁺ , (b) (Co^{3+} , and (c) S^{2-}		[6 marks]		
c)	Define H	Iund's first ru	ule and Pau	li's exclusion prir	nciple.		[6 marks]		
d)	Balance these equations by providing the missing coefficients:								
							[4 marks]		
4)									
a)	Which substance do you expect to have the greatest lattice energy, MgF ₂ , CaF ₂ ,or ZrO ₂ ?								
	Explain						[3 marks]		
b)	Predict the ion generally formed by:								
	(i) (ii) (iii) c) I marks]	Sr, S, Al. Predict the ch	narges on th	ne ions formed wh	en magnesium	reacts with n	[3 marks] iitrogen [2		

- d) In each case, which bond is more polar: **(a)** B—Cl or C—Cl, **(b)** P—F or P—Cl? Indicate in each case which atom has the partial negative charge. [6 marks]
- e) Name the 3 main reaction types and give 2 examples of each. [6 marks]

END OF QUESTION PAPER!!!