NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED CHEMISTRY
GENERAL CHEMISTRY FOR SBB AND ESH
SCH1217
Supplementary Examination Paper
August 2015

This examination paper consists of 5pages
Time Allowed: 3 hours
Total Marks:
100
Examiner's Name: Dr. Stephen Majoni and Mr. D. Dube

INSTRUCTIONS

1. Answer ALL questions in section A and any three (3) questions in section B
2. Each question in section A carries 10 marks and each question in section B carries 20 marks

MARK ALLOCATION

QUESTION	MARKS
SECTION A: 1.	$\mathbf{1 0}$
2.	$\mathbf{1 0}$
3.	$\mathbf{1 0}$
4.	$\mathbf{1 0}$
SECTION B: 5	20
6	20
7	20
8	20
TOTAL POSSIBLE MARKS	100

Copyright: National University of Science and Technology, 2015

SCH 1217

SECTION A

1. (a) Draw box electron configurations of these elements:

$$
\mathrm{Se} ; \mathrm{Nd} ; \mathrm{Co} ; \mathrm{Fr} ; \mathrm{Rn}
$$

(b) Using NaCl as an example, explain the difference between physical change and chemical change.
(c) How many moles are in 10 g of Potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$? [2 marks]
2. (a) Give examples of 3 molecules that are not compounds.
[3 marks]
(b) Which quantum numbers are used to describe an orbital and how are they related?
[4 marks]
(c) Write a balanced chemical equation of hydration of maltose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ to glucose. (3 marks)
3. (a) The concentration of hydroxyl ions in a solution of household bleach is $3.6 \times 10^{-2} \mathrm{M}$, calculate the pH of the bleach.
[3 marks]
(b) What is a buffer solution, give an example?
(c) With the aid of examples distinguish between strong and weak acids. [4 marks]
4. (a) State the four laws of thermodynamics.
(b) Aspirin, acetylsalicylic acid $\left(\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right)$, has a K_{a} value of 3.0×10^{-4}. Calculate the pH of a solution made by dissolving 0.65 g of acetylsalicylic acid in 50 mL of water.
[6 marks]

SCH 1217

SECTION B

5. (a) Predict the bond angles for the following:

$$
\mathrm{ClO}_{2} ; \mathrm{ClO}_{4}^{-} ; \mathrm{MnO}_{4}{ }^{2-} ; \mathrm{O}_{3} ; \mathrm{NO}_{2}^{-}
$$

[15 marks]
(b) Given the following equation: $\mathrm{LiOH}+\mathrm{KCl} \rightarrow \mathrm{LiCl}+\mathrm{KOH}$
(i) Calculate the theoretical yield from 20 grams of lithium hydroxide.
[3 marks]
(ii) If 6 grams of lithium chloride are actually produced. What is the actual yield?
[2 marks]
6. (a) If it takes $3.36 \times 10^{-19} \mathrm{~J}$ of energy to eject an electron from the surface of a certain metal, calculate the longest possible wavelength, in nanometers, of light that can ionize the metal.

Given:

$$
\begin{equation*}
h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \text { and } c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \tag{5marks}
\end{equation*}
$$

(b) $2.50 \mathrm{dm}^{3}$ of an unknown gas had a mass of 4.17 g at $18^{\circ} \mathrm{C}$ and a pressure of 101 kPa . Calculate the relative molecular mass of the gas.

Given:

$$
\mathrm{R}=8.31441 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

(c) If $3,17 \mathrm{~g}$ of Chlorine $\left(\mathrm{Cl}_{2}\right)$ gas occupy one litre (at standard conditions), calculate the molecular mass of the Chlorine (show your working).
[3 marks]
(d) Explain the difference between the ionization energies of $\mathrm{Ca}(6.113 \mathrm{eV})$ and Zn $(9.394 \mathrm{eV})$.
[4 marks]
(e) Explain the term Bohr radius and why an electron does not spiral into the nucleus.

Copyright: National University of Science and Technology, 2015

SCH 1217

7. (a) 2 moles of O_{2} and 2 moles of SO_{2} are placed in a $1 \mathrm{dm}^{3}$ container and allowed to come to equilibrium in the following reaction; $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$. The total pressure at equilibrium is 10 bar and the number of moles of O_{2} at equilibrium is 1.5 moles, write the expression for $K p$ and calculate its value at the same temperature.
[8 marks]
(b) Calculate $\Delta_{\mathrm{r}} \mathrm{H}^{0}, \Delta_{\mathrm{r}} \mathrm{S}^{\mathrm{o}}$ and $\Delta_{\mathrm{r}} \mathrm{G}^{\mathrm{o}}$ at 298 K for the oxidation of $\mathrm{SO}_{2}(\mathrm{~g})$ in air represented by the equation $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)$, and estimate the value of the equilibrium constant at 298 K .
$\Delta_{f} \mathrm{H}^{\mathrm{o}}\left(\mathrm{SO}_{2}\right) \quad=-296.9 \mathrm{~kJ} ; \quad \Delta \mathrm{S}^{\mathrm{o}}\left(\mathrm{SO}_{2}\right)=+248.5 \mathrm{~J} / \mathrm{K}$
$\Delta_{f} \mathrm{H}^{\mathrm{o}}\left(\mathrm{SO}_{3}\right) \quad=-395.2 \mathrm{~kJ} ; \quad \Delta \mathrm{S}^{\mathrm{o}}\left(\mathrm{SO}_{3}\right)=+256.2 \mathrm{~J} / \mathrm{K}$
$\Delta_{f} \mathrm{H}^{\mathrm{o}}\left(\mathrm{O}_{2}\right) \quad=0.00 ; \quad \Delta \mathrm{S}^{\mathrm{o}}\left(\mathrm{O}_{2}\right)=+205 \mathrm{~J} / \mathrm{K}$
[12 marks]
8. (a) At 170 K , the molar enthalpy of fusion of solid ammonia is $5.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the molar entropy of fusion is $28.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Is the transition shown in the equation below at equilibrium or not, if not in which direction is the reaction proceeding in and at what temperature is the reaction going to be at equilibrium?

$$
\mathrm{NH}_{3}(s) \rightleftharpoons \mathrm{NH}_{3}(l)
$$

[10 marks]
(b) A nuclear power plant emits into the atmosphere a very small amount of krypton-85, a radioactive isotope with a half-life of 10.76 years.
(i) Show that a first order reaction is an exponential decay reaction.
[4 marks]
(ii) What fraction of krypton remains after 25 years.
[6 marks]

Copyright: National University of Science and Technology, 2015

SCH 1217

Copyright: National University of Science and Technology, 2015

