

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY
BACHELOR OF SCIENCE HONOURS DEGREE
END OF FIRST SEMESTER EXAMINATIONS - JANUARY 2011
PHYSICAL CHEMISTRY I - SCH 2104
TIME: 3 HOURS

MATERIAL

Graph papers.

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in section A and Section B.
Answer each question on a FRESH page.

$$
\begin{aligned}
& \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K} \\
& \\
& \mathrm{~F}=\mathrm{mol}^{-1} \\
& \mathrm{~A}=9.6500 \times 10^{4} \mathrm{C} \mathrm{~mol}^{-1} ; \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
& 1 \mathrm{~atm}=760 \text { torr }=760 \mathrm{mmHg}=101325 \mathrm{~Pa} . \\
& \ln \mathrm{x}=2.3026 \log _{10} \mathrm{X}
\end{aligned}
$$

SECTION A Answer ALL questions. Each question carries 10 marks (Total 40)

1. (a) The standard enthalpy of reaction for the combustion of methane at 298 K is:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-894 \mathrm{kJmol}^{-1} .
$$

Calculate the standard enthalpy of formation of methane at the same temperature given the following information:

$$
\begin{align*}
& \Delta \mathrm{H}_{\mathrm{f}}^{0}\left\{\mathrm{H}_{2} \mathrm{O},(\mathrm{l})\right\}=-286.9 \mathrm{kJmol}^{-1}, \Delta \mathrm{H}_{\mathrm{f}}^{0}\left\{\mathrm{CO}_{2},(\mathrm{~g})\right\}=-393.5 \mathrm{kJmol}^{-1}, \\
& \Delta \mathrm{H}_{\mathrm{f}}^{0}\left\{\mathrm{C}_{2} \mathrm{H}_{6},(\mathrm{~g})\right\}=-84.7 \mathrm{kJmol}^{-1} . \tag{5marks}
\end{align*}
$$

(b) The enthalpy change when water freezes at 273 K is $-6 \mathrm{kJmol}^{-1} . \mathrm{c}_{\mathrm{p}}$ for liquid water is $73.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and for ice $37.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate the enthalpy change when water freezes at 253 K .
2. Give a detailed account of the first erroneous James Joule experiment to measure π_{T}. Your answer must include a schematic diagram of the apparatus used, the procedure, the observation, the thermodynamic implications of the observation, and the conclusion.
[10 marks]
3. (a) The specific volumes of water and ice at $0^{\circ} \mathrm{C}$ and at atmospheric pressure are $1.0001 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ and $1.0907 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ respectively, and the latent heat of fusion of ice is $334 \mathrm{Jg}^{-1}$. Calculate the melting point of ice under a pressure of $10^{7} \mathrm{~Pa}$.
$\left[\frac{\Delta T}{\Delta P}=\frac{T_{f} \Delta V}{\Delta H_{f}}\right.$]
[4 marks]
(b) The vapour pressure of benzene is $0.153 \times 10^{5} \mathrm{~Pa}$ at 303 K and $0.520 \times 10^{5} \mathrm{~Pa}$ at 333 K . Calculate the mean latent heat of evaporation of benzene over this temperature range.

$$
\begin{equation*}
\left[\ln \frac{P_{2}}{P_{1}}=\frac{-\Delta H_{v a p}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right] \tag{4marks}
\end{equation*}
$$

(c) What are the two assumptions used to transform the Clausius equation to the Clausius-Clapeyron equation?
[2 marks]
4. Antimony (m.p $630^{\circ} \mathrm{C}$) and lead (m.p $326^{\circ} \mathrm{C}$) form one eutectic mixture at $246^{\circ} \mathrm{C}$ which is 81 mole percent lead, but do not form any solid solutions. Draw a temperature - composition diagram, assuming that the liquidus lines are linear, and label each region indicating which phases are in equilibrium under the conditions that the regions represent. For a mixture containing 50 mole percent lead determine,
(a) the temperature at which solid first crystallizes out,
(b) the nature and proportion of solid in the mixture at $300^{\circ} \mathrm{C}$.
[10 marks]

SECTION B

Answer ALL THREE questions. Each question carries 20 marks
5. (a) State Kelvin's and Clausius' statements of the Second Law of Thermodynamics.
[4 marks]
(b) With the use of a diagram for illustrations, State and outline the four steps of a Carnot heat engine. Show all the results of work and heat and derive the Carnot efficiency in terms of temperature.
[16 marks]
6. (a) (i) State the Third law of Thermodynamics.
[3 marks]
(ii) Calculate the entropy of liquid mercury at its melting point, 234.1 K . The standard entropy of mercury (at 298.2 K) is $77.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and its heat capacity is $2.87 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. (Assume the heat capacity of mercury is constant in the temperature range 234.1 K to 298.2 K)
(b) Use the Trouton's rule to predict the molar enthalpy of vaporization of carbon tetrachloride given that it boils at $76.1^{\circ} \mathrm{C}$.
(c) Calculate the standard enthalpy change at 473 K for the reaction,

$$
\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} .
$$

The standard heats of formation of CO and CO_{2} at 298 K are -110.5 kJmol^{-1} and $-393.5 \mathrm{kJmol}^{-1}$ respectively. The heat capacities of $\mathrm{CO}, \mathrm{CO}_{2}$ and O_{2} over the temperature range 298 K to 473 K are given by the equations:

$$
\begin{aligned}
& c_{p}(\mathrm{CO})=\left(26.53+7.70 \times 10^{-3} \mathrm{~T}-1.17 \times 10^{-6} \mathrm{~T}^{2}\right) \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{c}_{\mathrm{p}}\left(\mathrm{CO}_{2}\right)=\left(26.78+42.26 \times 10^{-3} \mathrm{~T}-14.23 \times 10^{-6} \mathrm{~T}^{2}\right) \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{c}_{\mathrm{p}}\left(\mathrm{O}_{2}\right)=\left(25.52+13.60 \times 10^{-3} \mathrm{~T}-4.27 \times 10^{-6} \mathrm{~T}^{2}\right) \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

where T is the thermodynamic temperature.
[10 marks]
7. (a) What is a Colligative property?
(b) State the four main colligative properties in the study of solutions.
[8 marks]
(c) The rate of sedimentation of a recently isolated protein was monitored at $20^{\circ} \mathrm{C}$ and with a rotor speed (v) of $50000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
The boundary receded as follows:

Time $(\mathrm{t} / \mathrm{s})$	0	300	600	900	1200	1500	1800
Radius $(\mathrm{x} / \mathrm{cm})$	6.127	6.153	6.179	6.206	6.232	6.258	6.284

Calculate the sedimentation constant and the molar mass of the protein on the basis that its partial specific volume is $0.728 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ and its diffusion coefficient is $7.62 \times 10^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ at $20^{0} \mathrm{C}$, the density of the solution then being $0.9981 \mathrm{gcm}^{-3}$.
[Use $\omega=2 \pi \nu$, where v is in cycles/second]
[10 marks]

End of question Paper!!!

