

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY
 BACHELOR OF SCIENCE HONOURS DEGREE
 SUPPLEMENTARY EXAMINATIONS - AUGUST 2011
 PHYSICAL CHEMISTRY I - SCH 2104
 TIME: 3 HOURS

MATERIAL

Graph papers.

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in section A and Any Three questions in Section B. Answer each question on a FRESH page.

$$
\begin{aligned}
& \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{~F}=\mathrm{eN}_{\mathrm{A}}=9.6500 \times 10^{4} \mathrm{C} \mathrm{~mol}^{-1} ; \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
& 1 \mathrm{~atm}=760 \text { torr }=760 \mathrm{mmHg}=101325 \mathrm{~Pa} . \\
& \ln \mathrm{x}=2.3026 \log _{10} \mathrm{X}
\end{aligned}
$$

SECTION A Answer ALL questions. Each question carries 10 marks (Total 40)

1. Calculate the heat of formation of propane gas from its elements
(a) at constant pressure
(b) at constant volume
given that at 298 K and 1 atm pressure:
Heat of combustion of propane $=\quad-2220 \mathrm{kJmol}^{-1}$
Heat of formation of water $\quad=\quad-286.0 \mathrm{kJmol}^{-1}$
Heat of formation of carbon dioxide $=\quad-393.5 \mathrm{kJmol}^{-1}$
[Assume ideal behaviour for the gases]
[10 marks]
2. (a) The heat capacity of gaseous argon at constant pressure is $20.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Estimate the entropy change when one mole of argon is heated from 300 K to 1200 K at 1 atm pressure.
[4 marks]
(b) Calculate the entropy change when one mole of cadmium vapour at 1 atm pressure is heated from 1040 K to 1100 K and subsequently compressed to a pressure of 6 atm . You may assume that the vapour follows perfect gas behaviour.

$$
\begin{equation*}
\mathrm{c}_{\mathrm{v}}[\mathrm{Cd}(\mathrm{~g})]=12.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \tag{4marks}
\end{equation*}
$$

(c) Calculate the thermodynamic efficiency of a heat engine operating between the temperatures 600 K and 400 K
[2 marks]
3. (a) The specific volumes of water and ice at $0^{\circ} \mathrm{C}$ and at atmospheric pressure are $1.0001 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ and $1.0907 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$, respectively, and the latent heat of fusion of ice is $334 \mathrm{Jg}^{-1}$. Calculate the melting point of ice under a pressure of $10^{7} \mathrm{~Pa}$.
$\left[\frac{\Delta T}{\Delta P}=\frac{T_{f} \Delta V}{\Delta H_{f}}\right]$
[4 marks]
(b) The vapour pressure of benzene is $0.153 \times 10^{5} \mathrm{~Pa}$ at 303 K and $0.520 \times 10^{5} \mathrm{~Pa}$ at 333 K . Calculate the mean latent heat of evaporation of benzene over this temperature range.

$$
\begin{equation*}
\left[\ln \frac{P_{2}}{P_{1}}=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right] \tag{4marks}
\end{equation*}
$$

(c) What are the two assumption used to transform the Clausius equation to the Clausius-Clapeyron equation
[2 marks]
4. The saturated vapour pressures of benzene and toluene are both given by the equation,

$$
\log P^{*}=\frac{-0.05223 A}{T}+B
$$

where T is the thermodynamic temperature and A and B have the following values:

	A	B
Benzene	32295 K	9.7795
Toluene	39198 K	10.4549

Assuming that mixtures benzene and toluene form ideal solutions calculate the molar percentage of benzene in
(a) a mixture which boils at $97^{\circ} \mathrm{C}$ under an external pressure of 1 atm , and
(b) the initial condensate formed on distilling this mixture
[10 marks]

SECTION B

Answer ONLY THREE questions. Each question carries 20 marks
5. (a) With the aid of appropriate diagrams, state the Kelvin's and Clausius' statements of the Second Law of thermodynamics.
(b) What is the thermodynamic definition of entropy?

Use the Carnot cycle to prove that entropy is a state function. [8 marks]
(c) Entropy can be used as a criterion for spontaneous change and equilibrium. By first writing the Clausius inequality state how it is used
[4 marks]
(d) Use an example on spontaneous cooling to illustrate the Clausius inequality
6. (a) If you have a heat pump of Carnot as shown below, operating between two fronts of temperatures $260^{\circ} \mathrm{C}$ and $38^{\circ} \mathrm{C}$ respectively, and receiving from the warm from 1055 kJ . Determine:
(i) the entropy change of the warm front.
(ii) the entropy change of the cold front.
(iii) the total entropy change of the process.
[12 marks]

(b) The heat capacity of gaseous argon at constant volume is $12.48 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, and at constant pressure is $20.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
(i) Estimate the entropy change when one mole of the gas is expanded with simultaneous heating from $1 \mathrm{dm}^{3}$ at 300 K to $10 \mathrm{dm}^{3}$ at 1200 K .
[4 marks]
(ii) Estimate the entropy change when one mole of the gas is heated from 300 K to 1200 K at 1 atm pressure
7. (a) At 353 K the vapour pressures of two liquids A and B which are completely miscible and form an ideal solution are 757 and 66 mmHg , respectively. For an equimolar mixture $\left[\mathrm{x}_{\mathrm{A}}=\mathrm{x}_{\mathrm{B}}=0.5\right.$] calculate the total vapour pressure and the mole fraction of A in the vapour phases. Assume that the mixture follows Raoult's Law.
(b) Calculate the estimate mole fractions ($\left.\mathrm{x}_{\mathrm{A}}, \mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{A}}, \mathrm{y}_{\mathrm{B}}\right)$ in the respective phases at equilibrium when the total pressure of the solution is 600 mmHg
[8 marks]
(c) Calculate the estimate mole fractions ($\mathrm{x}_{\mathrm{A}}, \mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}$) in the respective phases, and also the total vapour pressure when y_{A} (the mole fraction of A in the vapour phase at equilibrium with the liquid mixture) is fixed at 0.85 .
8. (a) State Kelvin's and Clausius' statements of the Second Law of Thermodynamics
(b) With the use of a diagram for illustrations, State and outline the four steps of a Carnot heat engine. Show all the results of work and heat and derive the carnot efficiency in terms of temperature
9. (a) What is an Azeotrope?
[2 marks]
(b) State the two classes of azeotropic mixtures. Give an explanation for each class
(c) The figure below shows the phase diagram for two partially miscible liquids, A and B (which can be taken to be hexane (A) and nitrobenzene (B)). Copy the diagram and use it as you describe what will be observed when the mole fraction of B is increase from $x_{B}=0$ to $x_{B}=0.8$ at constant temperature T_{1}, and when the mixture at $x_{B}=0.8$ is heated from temperature T_{1} to T_{3}, at each significant stage giving the number, composition, and relative amounts of the phases present. [12 marks]

End of question Paper!!!

