

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY <u>DEPARTMENT OF APPLIED CHEMISTRY</u> <u>BACHELOR OF SCIENCE HONOURS DEGREE</u> <u>SUPPLEMENTARY EXAMINATIONS – AUGUST 2011</u> <u>PHYSICAL CHEMISTRY I – SCH 2104</u> <u>TIME: 3 HOURS</u>

MATERIAL Graph papers.

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in section A and Any Three questions in Section B. Answer each question on a FRESH page.

 $R = 8.314 J K^{-1} mol^{-1} = 0.08206 dm^3 atm K^{-1} mol^{-1}$

 $F = eN_A = 9.6500 \times 10^4 \text{ C mol}^{-1}; \quad N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

1 atm = 760 torr = 760 mmHg = 101 325 Pa.

 $\ln x = 2.3026 \log_{10} x$

<u>SECTION A</u> Answer ALL questions. Each question carries 10 marks (Total 40)

1.		Calculate the heat of formation of propane gas from its element (a) at constant pressure (b) at constant volume given that at 298K and 1 atm pressure: Heat of combustion of propane = -2220kJm Heat of formation of water = -286.0kJm Heat of formation of carbon dioxide = -393.5kJm [Assume ideal behaviour for the gases]	nts ol ⁻¹ nol ⁻¹ nol ⁻¹ [10 marks]	
2.	(a)	The heat capacity of gaseous argon at constant pressure is 20.8JK ⁻¹ mol ⁻¹ . Estimate the entropy change when one mole of argon is heated from 300K to 1200K at 1 atm pressure. [4 marks]		
	(b)	Calculate the entropy change when one mole of cadmium vapour at 1 atm pressure is heated from 1040K to 1100K and subsequently compressed to a pressure of 6 atm. You may assume that the vapour follows perfect gas behaviour. $c_v [Cd(g)] = 12.5 J K^{-1} mol^{-1}$ [4 marks]		
	(c)	Calculate the thermodynamic efficiency of a heat engine opera between the temperatures 600K and 400K	ting [2 marks]	

3. (a) The specific volumes of water and ice at 0^{0} C and at atmospheric pressure are 1.0001 cm³g⁻¹ and 1.0907 cm³g⁻¹, respectively, and the latent heat of fusion of ice is 334Jg⁻¹. Calculate the melting point of ice under a pressure of 10^{7} Pa.

$$\left[\frac{\Delta T}{\Delta P} = \frac{T_f \Delta V}{\Delta H_f}\right]$$
 [4 marks]

(b) The vapour pressure of benzene is 0.153x10⁵Pa at 303K and 0.520x10⁵Pa at 333K. Calculate the mean latent heat of evaporation of benzene over this temperature range.

$$\left[\ln \frac{P_2}{P_1} = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \right]$$
 [4 marks]

- (c) What are the two assumption used to transform the Clausius equation to the Clausius-Clapeyron equation [2 marks]
- The saturated vapour pressures of benzene and toluene are both given by the equation,

$$\log P^* = \frac{-0.05223A}{T} + B$$

where T is the thermodynamic temperature and A and B have the following values:

	А	В
Benzene	32 295K	9.7795
Toluene	39 198K	10.4549

Assuming that mixtures benzene and toluene form ideal solutions calculate the molar percentage of benzene in

- (a) a mixture which boils at 97° C under an external pressure of 1 atm, and
- (b) the initial condensate formed on distilling this mixture

[10 marks]

SECTION B

4.

Answer ONLY THREE questions. Each question carries 20 marks

- 5. (a) With the aid of appropriate diagrams, state the Kelvin's and Clausius' statements of the Second Law of thermodynamics. [4 marks]
 - (b) What is the thermodynamic definition of entropy?Use the Carnot cycle to prove that entropy is a state function. [8 marks]
 - (c) Entropy can be used as a criterion for spontaneous change and equilibrium. By first writing the Clausius inequality state how it is used [4 marks]

(d) Use an example on spontaneous cooling to illustrate the Clausius inequality [4 marks]

6. (a) If you have a heat pump of Carnot as shown below, operating between two fronts of temperatures 260°C and 38°C respectively, and receiving from the warm from 1 055kJ. Determine:

- (i) the entropy change of the warm front.
- (ii) the entropy change of the cold front.
- (iii) the total entropy change of the process. [12 marks]

- (b) The heat capacity of gaseous argon at constant volume is $12.48 \text{ J K}^{-1}\text{mol}^{-1}$, and at constant pressure is $20.8 \text{ J K}^{-1}\text{mol}^{-1}$.
 - (i) Estimate the entropy change when one mole of the gas is expanded with simultaneous heating from 1dm³ at 300K to 10dm³ at 1200K.

[4 marks]

- (ii) Estimate the entropy change when one mole of the gas is heated from 300K to 1200K at 1 atm pressure [4 marks]
- 7. (a) At 353K the vapour pressures of two liquids A and B which are completely miscible and form an ideal solution are 757 and 66 mmHg, respectively. For an equimolar mixture $[x_A = x_B = 0.5]$ calculate the total vapour pressure and the mole fraction of A in the vapour phases. Assume that the mixture follows Raoult's Law. [4 marks]
 - (b) Calculate the estimate mole fractions (x_A, x_B, y_A, y_B) in the respective phases at equilibrium when the total pressure of the solution is 600mmHg [8 marks]

- (c) Calculate the estimate mole fractions (x_A, x_B, y_B) in the respective phases, and also the total vapour pressure when y_A (the mole fraction of A in the vapour phase at equilibrium with the liquid mixture) is fixed at 0.85. [8 marks] 8. State Kelvin's and Clausius' statements of the Second Law of (a) Thermodynamics [4 marks] (b) With the use of a diagram for illustrations, State and outline the four steps of a Carnot heat engine. Show all the results of work and heat and derive the carnot efficiency in terms of temperature [16 marks] 9. (a) What is an Azeotrope? [2 marks] State the two classes of azeotropic mixtures. Give an explanation for each (b) class [6 marks] The figure below shows the phase diagram for two partially miscible (c) liquids, A and B (which can be taken to be hexane (A) and nitrobenzene (B)). Copy the diagram and use it as you describe what will be observed
 - when the mole fraction of B is increase from $x_B = 0$ to $x_B = 0.8$ at constant temperature T₁, and when the mixture at $x_B = 0.8$ is heated from temperature T₁ to T₃, at each significant stage giving the number, composition, and relative amounts of the phases present. [12 marks]

End of question Paper!!!