

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED CHEMISTRY

PHYSICAL CHEMISTRY 1

SCH2104

Supplementary Examination Paper

August 2015

This examination paper consists of 4 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Dr. Stephen Majoni

Useful information: $R = 8.314 \text{JK}^{-1} \text{ mol}^{-1}$; 1 atm = 101 325 Pa; 1 bar = 1×10⁵ Pa

INSTRUCTIONS

1. Answer ALL questions in section A and any three (3) questions in section B

2. Each question in section A carries 10 marks and in section B carries 20 marks

MARK ALLOCATION

QUESTION	MARKS
A1.	10
A2.	10
A3.	10
A4.	10
B1	20
B2	20
B3	20
B4	20
TOTAL	100

Copyright: National University of Science and Technology, 2014

SECTION A

- 1. (a) Calculate the ionic strength in a solution that is 0.0750 m in K₂SO₄, 0.0085 m in
Na₃PO₄, and 0.0150 m in MgCl₂.[5 marks]
 - (b) Using the Debye-Hückel limiting law given below, calculate the mean ionic activity coefficient in a 0.00225 m solution of CaHPO₄.

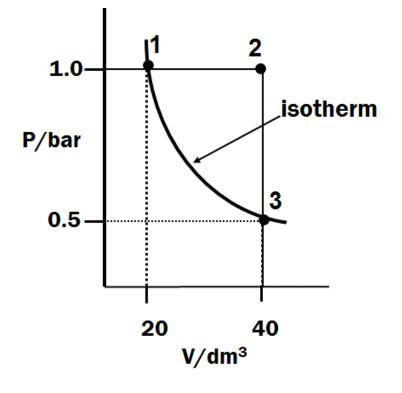
 $\log \lambda_{\pm} = -0.5092 |z_{\pm}z_{-}| \sqrt{I}$ [5 marks]

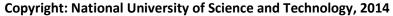
2. Explain the following predicted signs of entropy change for the following transformations.

a)	$O_2(g) \rightarrow 2 O(g)$	positive	
b)	$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$	negative	
c)	$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$	positive	
d)	$Br_2(l) \rightarrow Br_2(g)$	positive	
e)	$N_2(g, 10 \text{ atm}) \rightarrow N_2(g, 1 \text{ atm})$	negative	[10 marks]

- 3. Calculate ΔH_{tot} and ΔS_{tot} when 2 iron blocks, each of mass 1.00 kg, one at 200 °C and the other at 25°C, are placed in contact in an isolated container. The specific heat capacity of iron is 0.449 JK⁻¹ g⁻¹ and may be assumed constant over the temperature range involved. [10 marks]
- 4. (a) Using indicator diagrammes, compare and contrast work done during reversible and non-reversible expansion. [6 marks]
 (b) Draw a fully labelled phase diagram of water. [4 marks]

Copyright: National University of Science and Technology, 2014


Page 2of 4


SECTION B

- 1. Draw a well labelled Carnot cycle, and from the cycle show that entropy is a state function. [20 marks]
- 2. (a) Making use of diagrammes discuss the difference between adiabatic and isothermal change. [8 marks]
 - (b) Discuss how the Carnot cycle represents the most efficient engine. [12 marks]
- 3. (a) State Kelvin's and Clausius' statements of the Second Law of Thermodynamics.

[4 marks]

- (b) For a Carnot heat engine show all the results of work and heat transfer for each stage, and derive the carnot efficiency in terms of temperature. [16 marks]
- 4. A sample consisting of 1 mol of perfect monatomic gas (for which $C_{\nu,m} = \frac{3}{2}R$) is taken through the process shown below.

Page 3of 4

- (a) Determine the temperature at the points 1,2, and 3.
- (b) Calculate q, w, ΔU, and ΔH for each step and for the overall cycle. If a numerical answer cannot be obtained from the information given, then write the answer as positive, negative, or zero as appropriate. [20 marks]

End of Question Paper!!!

Copyright: National University of Science and Technology, 2014

Page 4of 4