	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES DEPARTMENT OF APPLIED CHEMISTRY PHYSICAL CHEMISTRY 1			
SCH2104				
First Semester Examination Paper				
December 2015				
	This examination paper consists of 4 pages			
Time Allowed	: 3 hours			
Total Marks:	100			
Examiner's Na	ame: Dr. S. Majoni			
Useful inf	Formation: $R = 8.314 \text{JK}^{-1} \text{ mol}^{-1}$; 1 atm = 101 325 Pa; 1 bar = 100000 Pa			

INSTRUCTIONS

1. Answer ALL questions in section A and any three (3) questions in section B.

2. Each question in section A carries 10 marks and in section B carries 20 marks.

3.

MARK ALLOCATION

QUESTION	MARKS	
A1.	10	
A2.	10	
A3.	10	
A4.	10	
B1	20	
B2	20	
B3	20	
B4	20	
TOTAL	100	

Copyright: National University of Science and Technology, 2015

SECTION A

1.	1. Discuss any two colligative properties and for one of them explain its applications.					
			[10 Marks]			
2.	a) S	State the first law of thermodynamics	[2 Marks]			
	b) Differentiate the following types of equilibria:					
	(i	i) Chemical Equilibrium				
	(i	ii) Mechanical Equilibrium				
	(i	iii) Thermal Equilibrium				
	(i	iv) Phase Equilibrium	[8 Marks]			
3.	3. Calculate the heat capacity of an aluminium block that must absorb 629 J of heat					
	from its surroundings in order for its temperature to rise from 22 $^{\circ}$ C to 145 $^{\circ}$ C.					
			[4 Marks]			
	b) Calculate the final temperature when 100 g of water at 80°C is poured into 100 g					
	of wa	ater at 10°C in an insulated system.	[6 Marks]			
4.	A. a) Internal energy (U) and enthalpy (H) are state functions. Explain what is a state					
	funct	tion and give two more examples of state functions	[5 Marks]			

b) Calculate the work done during the adiabatic expansion step of a Carnot cycle that is operating between 300 K and 200K. Given that $C_{v,m} = \frac{3}{2}R$. [5 marks]

Copyright: National University of Science and Technology, 2015

SCH 2104

SECTION B

1. a) Describe the Zeroth Law of thermodynamics and state its applications.

[5 Marks]

b) Show that ΔS for a system composed of a perfect gas undergoing a reversible

Isothermal Expansion is given by: $\Delta S = -nRln\left(\frac{P_f}{P_i}\right)$ [10 Marks]

c) State the properties of the walls of a closed system. [5 marks]

- 2. a) K_c for the reaction $I_2(g) \rightleftharpoons 2I(g)$ is 5.6 × 10⁻¹² at 500K; A mixture has $[I_2] = 0.0020$ M and $[I] = 3.7 \times 10^{-7}$ M. Is the reaction at equilibrium (at 500K)? If not, which way must the reaction proceed to attain equilibrium? [6 marks]
 - b) The total pressure in a flask containing N_2O_4 (g) and NO_2 (g) at 25°C is 1.50 bar, the value of *Kp* at 25°C is 0.148, what fraction of N_2O_4 has dissociated to NO_2 . N_2O_4 decomposes to NO_2 according to the following reaction

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

c) An unknown substance of concentration 31.2 kg m⁻³ has an osmotic pressure of 5.30x10⁴ Pa at 298 K. Determine the molecular weight if the density of the solution is 997 kg m⁻³.

- 3. a) Define the following terms as used in thermodynamics
 - i) Open thermodynamic system
 - ii) Isolated thermodynamic system
 - iii) Equilibrium state
 - iv) Isochoric change
 - v) Adiabatic change
 - b) The following reaction is at equilibrium:

 $4NH_3(g) + 3O_2(g) \rightleftharpoons 6H_2O(g) + 2N_2(g)$

Copyright: National University of Science and Technology, 2015

SCH 2104

Page 3 of 4

[10 Marks]

[8 Marks]

Explain Le-Chartlier's prediction on how the equilibrium will shift if a lit match is placed inside the container [6 Marks]

- c) Discus the fundamental differences between ΔH and ΔU . Of the two which one is a more useful parameter under ordinary laboratory conditions? [4 Marks]
- 4. a) The heat pump can be represented as the Carnot cycle traversed in reverse.Give a fully labelled graphical representation of the heat pump. [10 marks]
 - b) What is the fundamental difference between the heat pump and the heat engine?Use the Carnot cycle to formulate the second law of thermodynamics.

[10 Marks]

End of Question Paper!!!

Copyright: National University of Science and Technology, 2015