

FACULTY OF APPLIED SCIENCES
DEPARTMENT OF APPLIED CHEMISTRY
PHYSICAL CHEMISTRY 1
SCH2104
First Semester Examination Paper

December 2015

This examination paper consists of 4 pages

Time Allowed:

Total Marks:
100

Examiner's Name:
Useful information:
$\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; 1 \mathrm{~atm}=101325 \mathrm{~Pa} ; 1 \mathrm{bar}=100000 \mathrm{~Pa}$

INSTRUCTIONS

1. Answer ALL questions in section A and any three (3) questions in section B.
2. Each question in section A carries 10 marks and in section B carries 20 marks.
3.

MARK ALLOCATION

QUESTION	MARKS
A1.	$\mathbf{1 0}$
A2.	$\mathbf{1 0}$
A3.	$\mathbf{1 0}$
A4.	$\mathbf{1 0}$
B1	$\mathbf{2 0}$
B2	$\mathbf{2 0}$
B3	$\mathbf{2 0}$
B4	$\mathbf{2 0}$
TOTAL	$\mathbf{1 0 0}$

Copyright: National University of Science and Technology, 2015

SECTION A

1. Discuss any two colligative properties and for one of them explain its applications.
[10 Marks]
2. a) State the first law of thermodynamics
[2 Marks]
b) Differentiate the following types of equilibria:
(i) Chemical Equilibrium
(ii) Mechanical Equilibrium
(iii) Thermal Equilibrium
(iv) Phase Equilibrium
[8 Marks]
3. Calculate the heat capacity of an aluminium block that must absorb 629 J of heat from its surroundings in order for its temperature to rise from $22^{\circ} \mathrm{C}$ to $145^{\circ} \mathrm{C}$.
[4 Marks]
b) Calculate the final temperature when 100 g of water at $80^{\circ} \mathrm{C}$ is poured into 100 g of water at $10^{\circ} \mathrm{C}$ in an insulated system.
[6 Marks]
4. a) Internal energy (U) and enthalpy (H) are state functions. Explain what is a state function and give two more examples of state functions [5 Marks]
b) Calculate the work done during the adiabatic expansion step of a Carnot cycle that is operating between 300 K and 200 K . Given that $C_{v, m}=\frac{3}{2} R$. [5 marks]

Copyright: National University of Science and Technology, 2015

SECTION B

1. a) Describe the Zeroth Law of thermodynamics and state its applications.
[5 Marks]
b) Show that $\Delta \mathrm{S}$ for a system composed of a perfect gas undergoing a reversible Isothermal Expansion is given by: $\Delta \mathrm{S}=-\mathrm{nR} \ln \left(\frac{\mathrm{P}_{f}}{\mathrm{P}_{i}}\right)$
c) State the properties of the walls of a closed system.
2. a) K_{c} for the reaction $I_{2}(g) \rightleftarrows 2 I(g)$ is 5.6×10^{-12} at 500 K ; A mixture has $\left[\mathrm{I}_{2}\right]=$ 0.0020 M and $[\mathrm{I}]=3.7 \times 10^{-7} \mathrm{M}$. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to attain equilibrium?
[6 marks]
b) The total pressure in a flask containing $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ and $\mathrm{NO}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ is 1.50 bar, the value of $K p$ at $25^{\circ} \mathrm{C}$ is 0.148 , what fraction of $\mathrm{N}_{2} \mathrm{O}_{4}$ has dissociated to NO_{2}. $\mathrm{N}_{2} \mathrm{O}_{4}$ decomposes to NO_{2} according to the following reaction

$$
\begin{equation*}
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \tag{8Marks}
\end{equation*}
$$

c) An unknown substance of concentration $31.2 \mathrm{~kg} \mathrm{~m}^{-3}$ has an osmotic pressure of $5.30 \times 10^{4} \mathrm{~Pa}$ at 298 K . Determine the molecular weight if the density of the solution is $997 \mathrm{~kg} \mathrm{~m}^{-3}$.
[6 Marks]
3. a) Define the following terms as used in thermodynamics
i) Open thermodynamic system
ii) Isolated thermodynamic system
iii) Equilibrium state
iv) Isochoric change
v) Adiabatic change
[10 Marks]
b) The following reaction is at equilibrium:

$$
4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \rightleftarrows 6 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{~N}_{2}(g)
$$

Copyright: National University of Science and Technology, 2015

Explain Le-Chartlier's prediction on how the equilibrium will shift if a lit match is placed inside the container
[6 Marks]
c) Discus the fundamental differences between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$. Of the two which one is a more useful parameter under ordinary laboratory conditions? [4 Marks]
4. a) The heat pump can be represented as the Carnot cycle traversed in reverse. Give a fully labelled graphical representation of the heat pump. [10 marks]
b) What is the fundamental difference between the heat pump and the heat engine? Use the Carnot cycle to formulate the second law of thermodynamics.
[10 Marks]

End of Question Paper!!!

