

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY

PHYSICAL CHEMISTRY I – SCH 2104

First Semester Examination Paper

December 2016

This examination paper consists of 6 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: Graph Paper (on request) $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} = 0.08206 \text{ dm}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$ $F = eNA = 9.6500 \times 10^4 \text{ C mol}^{-1}$ 1 atm = 760 torr = 760 mmHg = 101325 Pa

Examiner's Name: DR B N YALALA

INSTRUCTIONS

1. Answer <u>all</u> questions from Section A and <u>any three</u> from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

MARK ALLOCATION

QUESTION	MARKS
1.	40
2.	20
3.	20
4.	20
5.	20
TOTAL POSSIBLE MARKS	100

Copyright: National University of Science and Technology, 2016

SCH 2104

SECTION A:

1. (a) Evaluate ΔG° for the reaction in which diatomic hydrogen and oxygen gases react to form water vapor at 298K, using values of ΔH_{f}° and S°. Is the reaction spontaneous at 298K?

 $2H_2(g) + O_2(g) \longrightarrow 2H_2O(g).$

	ΔH_{f}^{o} kJ/mol	S ^o J/mol K
$H_2(g)$	0	130.6
$O_2(g)$	0	205
$H_2O(g)$	-241.8	188.7

(5 Marks)

- (b) Write both K_c and K_p expressions for the following reversible reactions:
 - (i) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
 - (ii) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
 - (iii) $S(s) + H_2SO_3(aq) \rightleftharpoons H_2S_2O_3(aq)$

(6 marks)

- (c) What is a phase diagram, and what information can be obtained from it? (5 Marks)
- (d) The standard enthalpy of decomposition of the yellow complex NH₃SO₂ into NH₃ and SO₂ is +40 kJ mol⁻¹. Calculate the standard enthalpy of formation of NH₃SO₂ given $\Delta_f H^{\Theta}$ (NH₃, (g)) = -46.11 kJ mol⁻¹ and $\Delta_f H^{\Theta}$ (SO₂, (g)) = -296.83 kJ mol⁻¹.

(5 marks)

- (e) State Kelvin's and Clausius' statements of the Second Law of Thermodynamics. (4 Marks)
- (f) A solution containing 0.80 grams of a protein in 100 mL of a solution has an osmotic pressure of 2.06 torr at 25.0°C.

What is the molecular mass of the protein?

(5 Marks)

Copyright: National University of Science and Technology, 2016 SCH 2104

(g) K_c for the reaction

 $I_2(g) \leftrightarrows 2I(g)$

is 5.6×10^{-12} at 500K. A mixture has $[I_2] = 0.0020$ M and $[I] = 3.7 \times 10-7$ M. Is the reaction at equilibrium (at 500K)? If not, which way must the reaction proceed to attain equilibrium?

(4 Marks)

(h) A sample of 1.00 mol $H_2O(g)$ is condensed isothermally and reversibly to liquid water at 100°C. The standard enthalpy of vaporization of water at 100°C is 40.656 kJ mol⁻¹. Find w, q, ΔU , and ΔH for this process.

(6 Marks)

SECTION B:

 (a) Consider an ideal gas that occupies 2.25 L at 1.33 bar. Calculate the work required to compress the gas isothermally to a volume of 1.5 L at a constant pressure of 2.0 bar followed by another isothermal compression to 0.8 L at a constant pressure of 2.5 bar.

(6 Marks)

(b) What is the work for compressing the gas isothermally and reversibly from 2.25 L to 0.8 L?

(4 Marks)

(c) Consider the following reaction:

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

At 1000 Kelvin, $\Delta H^{\circ}_{rxn} = -123.77 \text{ kJ mol}^{-1}$. What is the enthalpy of formation for NH₃ (gas) at 300 Kelvin? Consider the following molar heat capacities: C_{p,m} = 3.502R, 3.466R, and 4.217R for N₂(g), H₂(g), and NH₃(g), respectively. State any approximations you invoke.

(5 Marks)

(d) Sulphur transforms from the rhombic form to the monoclinic form under a pressure of 1 bar at 95.4°C. Its reported enthalpy of transition is 0.38 kJ mol⁻¹. What is the entropy of transition?

(5 Marks)

<u>Copyright: National University of Science and Technology, 2016</u> SCH 2104

Page 3 of 6

3. (a) The following cell is useful for the determination of the solubility of silver bromide.

 $Ag(s) | AgBr(s) | Br (aq, a_{Br}) || Ag (aq, a_{Ag+}) | Ag(s)$

(i) What is the overall reaction for this cell, as written, given the following electrode potential

AgBr (s) + e⁻
$$\longrightarrow$$
 Ag(s) + Br-(aq, a_{Br}) E° = +0.07133V
Ag⁺(aq, a_{Ag}) + e- \longrightarrow Ag(s) E° = +0.7996V

- (ii) What is the standard voltage of this cell at 298.15 K, assuming no junction potential?
- (iii) What is the standard Gibbs energy change for the cell reaction, as written, at 298.15 K?
- (iv) What is K_{sp} for the AgBr at 298.15 K?

(10 Marks)

(b) Determine the amount of heat required to raise the temperature of 1.768 moles of liquid Ni from 2000 K to 2500 K, as accurately as you can. Use the heat capacity of nickel (\mathcal{C}_{pm}^{0}) 38.91103 J $K^{-1}mol^{-1}$.

[Assume that the pressure remains constant at 1 bar during the process].

(5 points)

(c) Calculate the standard molar Gibbs energy of vaporization of methanol at 298.15 K using the following values:

 $\Delta_{f} G^{\theta}_{m} (\text{liquid}) = -\mathbf{166.6} \text{ KJ}$ $\Delta_{f} G^{\theta}_{m} (\text{gas}) = -\mathbf{162.3} \text{ KJ}$

 $CH_3OH(liquid) \rightarrow CH_3OH(gas)$

(5 Marks)

Copyright: National University of Science and Technology, 2016 SCH 2104

- 4. (a) Benzene ($P \bullet = 96.4 \text{ torr}$) and toluene ($P \bullet = 28.9 \text{ torr}$) form a nearly ideal solution over a wide range. For purposes of this question, you may assume that a solution of the two is ideal.
 - (i) What is the total vapour pressure of the above solution containing 5.00 moles of benzene and 3.25 moles of toluene?
 - (ii) What is mole fraction of benzene in the vapour of the above solution? (5 Marks)
 - (b) The vapor pressure over ice has been measured at several different temperatures. At 220 K it is 2.732 torr and at 230 K it is 9.195 torr. Determine the enthalpy of sublimation of ice in this region of temperature. One must use the Clausius-Clapeyron equation to solve this problem. Assuming the enthalpy of sublimation is temperature independent, one has the equation:

$$\ln\left(\frac{P_2}{P_1}\right) = -\frac{\Delta_{sub}H}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

(5 Marks)

(c) Calculate ΔH and ΔU at 298 K and ΔH at 378 K for the reaction

 $C(graphite) + H_2O(g) \longrightarrow CO(g) + H_2(g)$

Assume all heat capacities to be constant over the temperature range involved.

Given: Δ_{f} H: C(graphite) = 0 kJ mol⁻¹, H₂O(g) = -241.82 kJ mol⁻¹, CO(g) = -110.53 kJ mol⁻¹, and H₂(g) = 0 kJ mol⁻¹.

Cp,m : C(graphite) = 8.53 J K⁻¹ mol⁻¹, H₂O(g) = 33.58 J K⁻¹ mol⁻¹, CO(g) = 29.14 J K⁻¹ mol⁻¹ and H₂(g) = 28.83 J K⁻¹ mol⁻¹.

All values are at 298 K.

(10 Marks)

5. (a) Calculate the lattice enthalpy of
$$MgBr_2$$
 from the following data:

	$\Delta H(KJ mol^{-1})$	
Sublimation of Mg(s)	+148	
Ionization of $Mg(g)$ to $Mg^{2+}(g)$	+2187	
Vaporization of Br ₂ (l)	+31	
Dissociation of $Br_2(g)$	+193	
Electron attachment to Br(g)	-331	
Formation of $MgBr_2(s)$ from $Mg(s)$ and $Br_2(l)$	-524	
	(10 Marks)	
Copyright: National University of Science and Technology, 2016		

SCH 2104

(b) Antimony (m.p 630°C) and lead (m.p 326°C) form one eutectic mixture at 246°C which is 81 mole percent lead, but do not form any solid solutions. Draw a temperature – composition diagram, assuming that the liquidus lines are linear, and label each region indicating which phases are in equilibrium under the conditions that the regions represent. For a mixture containing 50 mole percent lead determine,

(a) the temperature at which solid first crystallizes out,

(b) the nature and proportion of solid in the mixture at 300°C

(10 Marks)

END OF QUESTION PAPER

Copyright: National University of Science and Technology, 2016 SCH 2104

Page **6** of **6**