

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY BACHELOR OF SCIENCE HONOURS DEGREE END OF FIRST SEMESTER EXAMINATIONS – JANUARY 2013 ANALYTICAL CHEMISTRY II – SCH 2106

TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES

Answer <u>FIVE</u> questions out of <u>SIX</u> questions provided.

Requirements: Calculator, Graph Paper and Standard electrode tables.

1.	(a)	With the aid of a diagram, explain what you understand by a liquid-junct potential? Explain how it develops?	tion [5]
	(b)	Calculate the equilibrium constant for the reaction $2MnO_4^- + 3Mn^{2+} + 2H_2O \Leftrightarrow 5MnO_2(s) + 4H^+$	[7]
	(c)	Describe three mechanisms by which electricity is transported the electrochemical cell.	hrough ar [3]
	(d)	Derive an equation to show the relationship between the cell potential, standard cell potential, \boldsymbol{E}^0 .	E, and the [5]
2.	(a)	List four limitations of the glass electrode for pH measurement.	[4]
	(b)	Describe how a mercury electrode could function as an electrode of first k Hg(II) and of second kind for EDTA.	ind of [4]
	(c)	Calculate and draw the titration curve for the titration of 50.0 mL of 0.050 with 0.100 M Ag ⁺ . The equilibrium constant for the reaction is $K_{\rm sp} = 1.8~{\rm x}$	4.0
	(d)	Describe the alkaline error in the measurement of pH. Under what circum this error appreciable? How are pH data affected by alkaline error?	stances is [4]
	(e)	How does a gas-sensing probe differ from other membrane electrodes.	[4]
3.	(a)	Define the following: (i) Absorbance (ii) Transmittance (iii) Beer Lambert's Law	[2] [2] [2]

	3.	(b)	What are the limitations of Beer Lambert's Law?	[6]	
		(c)	A solution containing a complex formed between Bi(III) and thiourea has molar absorptivity of $9.32 \times 10^3 \text{L.cm}^{-1} \text{mol}^{-1}$ at 470nm .	a	
		(i)	What is the absorbance of a 6.24×10^{-5} M solution of the complex in a cell?	1.00 cm	
		(ii)	What is the percentage transmittance of the solution described in (i)?		
		(iii)	What is the molar concentration of the complex in a solution that absorbance described in (i) when measured at 470 nm in a 5.00 cm cell.	has the	
4.		(a)	Define: (i) partition ratio (ii) retention time (iii) stationary phase (iv) efficiency of a column	[8]	
		(b)	Draw a block diagram for high performance liquid chromatography.	[5]	
		(c)	What are the characteristics of an ideal detector for gas chromatography?	[7]	
5.		(a)	Describe in detail the transitions responsible for absorption by:		
			(i) Lanthanide and actinide ions.	[5]	
			(ii) Elements of the first and second transition-metal series.	[5]	
			(iii)Using examples explain how conjugation affects absorption.	[5]	
		(b)	What is charge-transfer absorption? Give examples in your answer.	[5]	
6.		Define	e the following terms:		
		(a) res	onance fluorescence.	[2]	
		(b) vib	orational relaxation.	[2]	
		(c) into	ernal conversion.	[2]	
		(d) quantum yield.			

(e) Why are most fluorescence instruments double beam in design? [3]
(f) Describe the basic differences between atomic emission and atomic absorption spectroscopy. [4]
(g) Why is atomic emission more sensitive to flame instability than atomic absorption or fluorescence? [3]
(h) What is the purpose of an internal standard in flame emission methods? [2]

End of question Paper!!!