	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY	
	FACULTY OF APPLIED SCIENCES	
	DEPARTMENT OF APPLIED CHEMISTRY	
	ANALYTICAL CHEMISTRY II	
	SCH 2106	
Supplementary Examination Paper		
July 2016		

This examination paper consists of 3 pages of examination questions and 3 pages of reduction potential tables.

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: Reduction Potential Tables (attached to the paper)

Examiner's Name: Dr A. Maringa

INSTRUCTIONS

- 1. Answer any *FOUR* questions. Each question carries 25 marks. Illustrate your answer, where appropriate, with large clearly labelled diagrams.
- 2. Use of calculators is permissible.
- 3. Electrode potential tables will be provided.

MARK ALLOCATION

QUESTION	MARKS			
1.	25			
2.	25			
3.	25			
4.	25			
5.	25			
TOTAL POSSIBLE MARKS	100			
Copyright: National University of Science and Technology, 2015				

SCH 2106 SUPP

1.	(a).	Briefly describe or define		
		i. Electrode potential.		
		ii. Formal potential.		
		iii. Standard electrode potential.		
		iv. Liquid-junction potential.		
		v. Oxidation potential	[10 marks]	
	(b).	(b). Calculate the potential of a platinum electrode immersed in a solution		
		i. 0.0160 M in K ₂ PtCl ₄ and 0.2450 M in KCl.	[5 marks]	
		ii. 0.0650 M in Sn(SO ₄) ₂ and $3.5 \times 10^{-3} \text{ M}$ in SnSO ₄ .	[5 marks]	
		iii. Buffered to a pH of 6.50 and saturated with $H_2(g)$ at 1.00 atm.	[5 marks]	
2.	(a).	With the aid of labeled diagrams explain the difference between single	e-beam and	
		double beam spectrophotometers.	[7 marks]	
	(b).	Discuss the limitations of Beer's Law.	[13 marks]	
	(c).	Why is it necessary for the glass in the membrane of pH-sensitive elec	ctrode to be	
		appreciably hygroscopic?	[5 marks]	
3.	(a).	Define the following:		
		i. Absorbance	[2 marks]	
		ii. Transmittance	[2 marks]	
		iii. Beer Lambert's Law	[2 marks]	
	(b).	What are the advantages and disadvantages of decreasing monoch	nromator slit	
		width?	[6 marks]	

Copyright: National University of Science and Technology, 2015

SCH 2106 SUPP

3.	(c).	A solution containing a complex formed between Bi(III) and thiourea has a molar		
		absorptivity of 9.32 x 10^3 L.cm ⁻¹ mol ⁻¹ at 470 nm.		
		i. What is the absorbance of a 5.67 x 10^{-5} M solution of the complex in		
		1.00 cm cell?	[4 marks]	
		ii. What is the percentage transmittance of the solution describ	bed in (i)?	
			[4 marks]	
		iii. What is the molar concentration of the complex in a solution the	hat has the	
		absorbance described in (i) when measured at 470 nm in a 2.5	50 cm cell.	
			[5 marks]	
4.	(a). Why is atomic emission more sensitive to flame instability than atomic			
		absorption?	[7 marks]	
	(b).	Draw a diagram illustrating the main parts of an atomic absorption		
		spectrophotometer.	[8 marks]	
	(c).	What processes occur to produce light emission from the flame when a	solution	

- containing sodium ions is presented to the instrument? [10 marks]
- 5. Consider the following oxidation/reduction reactions:

$$\begin{split} AgBr(s) + V^{2+} &\to Ag(s) + V^{3+} + Br^{-} \\ Tl^{3+} + 2Fe(CN)_{6}^{4-} &\to Tl^{+} + 2Fe(CN)_{6}^{3-} \\ 2V^{3+} + Zn(s) &\to 2V^{2+} + Zn^{2+} \\ Fe(CN)_{6}^{3-} + Ag(s) + Br^{-} &\to Fe(CN)_{6}^{4-} + AgBr(s) \\ S_{2}O_{8}^{2-}(s) + Tl^{+} &\to 2SO_{4}^{2-} + Tl^{3+} \end{split}$$

(a). Write each net process in terms of two balanced half-reactions. [10 marks]

- (b). Express each half-reaction as a reduction. [10 marks]
- (c). Arrange the half-reactions in (b) in order of decreasing effectiveness as electron acceptors. [5 marks]

End of question paper!!!

Copyright: National University of Science and Technology, 2015

SCH 2106 SUPP