

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF APPLIED CHEMISTRY

END OF SEMESTER EXAMINATIONS – APRIL 2009

TRANSPORT PHENOMENA – SCH 2108

TIME – (3) THREE HOURS

INSTRUCTIONS TO CANDIDATES

Answer <u>ALL</u> questions from Section A and <u>ANY THREE</u> questions from Section B.

SECTION A

1.	(a)	Define the following terms:			
		 (i) Hydrostatic paradox (ii) Absolute pressure (iii) Gauge pressure 	(6 marks)		
	(b)	With the aid of a sketch diagram represent absolute and	l gauge pressures. (14 marks)		
2.	(a)	State the Buckingham PI theorem.	(2 marks)		
	(b)	Define the following terms:			
		(i) Conduction(ii) Convection(iii) Radiation	(6 marks)		
3.	(a)	State the continuity equation.	(3 marks)		
	(b)	Define what is called Shear Stress.	(2 marks)		
	(c)	By means of a diagram, or if you prefer by simply describing in w			
		now are fluids classified.	(2 marks)		

(d) Explain the difference between the mass of an object and the weight of an object.

(2 marks)

4. In a plant you have purchased out of the United States, the following designations are used for values on the equipment:

(i)	psi	(1 mark)
(ii)	psig	(1 mark)
(iii)	psia	(1 mark)

5. State the equation of the total energy. (4 marks)

<u>SECTION B</u> (Answer Any Three Questions)

1.	(a)	Explain the forces acting on the flowing fluid at a steady st friction losses. Illustrate your answer by drawing a diagram	tate without m. (5 marks)	
	(b)	Derive the Bernoulli's equation.	(12 marks)	
	(c)	What does each term represent in the Bernoulli Equation.	(3 marks)	
2.	(a)	Name some five pressure sensing devices that are used?	(5 marks)	
	(b)	At low speeds, fluids tend to flow in a steady and reproducible manner.		
		i. What is the term used in fluid mechanics to desc flow described above (b)?	cribe the type of (2 marks)	
		ii. Draw the velocity profile that will result from the described under (b).	the flow pattern (3 marks)	
		iii. State the critical Reynolds region. Explain the sig	gnificance of the	
		region.	(5 marks)	
	(c)	What is Fourier's law of thermal conductivity?	(2 marks)	

	(d)	Why is therm	nal insulation used in industry?	(3 marks)
3.	(a)	A 0.02m thic diameter of 0 process poin of thermal co temperature	ck steel pipe of thermal conductivity 0.06m is used to carry steam at 115° t 6 m away. If the pipe is covered wonductivity 0.07w/mK. What is the is $24^{\circ}C$?	y 43W/mK with an inside C from a boiler to a with 0.05m thick insulation heat loss if the (12 marks)
(b) Sketch a te exchanger.		Sketch a tem exchanger.	nperature versus distance graph for a	a co-current heat (2 marks)
	(c)	Write down the formulae of the following indicating the meaning of the symbols:		
		(i) Prano	dtl number	(3 marks)
		(ii) Nuss	elt number	(3 marks)

- 4. (a) Natural convection and radiation cool an electronic cabinet made of anodised aluminium. The surface area of the cabinet is 0.368m², the temperature of the surrounding fluid and surface is 25°C, and h=6.8W/(m²°C). Estimate the rate of heat transfer from the cabinet if its surface temperature is to be maintained at 125°C. Draw a sketch diagram depicting the cabinet and label it. Comment on the individual results. (12 marks)
 - (b) Define a blackbody. (2 marks)
 - (c) Define the following terms:
 - i. Local mass transfer coefficient
 - ii. Overall mass transfer coefficient
 - iii. Give the relationships between local and overall mass transfer coefficients

(6 marks)

END OF QUESTION PAPER !!!