

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY <u>DEPARTMENT OF APPLIED CHEMISTRY</u> <u>END OF SECOND SEMESTER EXAMINATIONS – JUNE 2010</u> <u>PHYSICAL CHEMISTRY II – SCH 2204</u> <u>TIME: (3) THREE HOURS</u>

INSTRUCTIONS TO CANDIDATES

MATERIAL

Reduction potential tables, graph papers.

INSTRUCTIONS TO STUDENTS

Answer <u>All</u> questions in section A and <u>All</u> questions in Section B. Answer each question on a FRESH page.

$$\begin{split} R &= 8.314 \text{ JK}^{-1} \text{mol}^{-1} = 0.08205 \text{ dm}^3 \text{ atm}^{-1} \text{ K}^{-1} \text{mol}^{-1}.\\ F &= \text{eN}_{\text{A}} = 96 \text{ 485 C mol}^{-1}\\ 1 \text{ atm} = 760 \text{ torr} = 760 \text{mmHg} = 101 \text{ 325 Pa}\\ \text{lnx} &= 2.3026 \text{logx} \end{split}$$

<u>SECTION A</u> Answer ALL questions. Each question carries 10 marks

1.	(a)	The conductivity of 0.01 moldm ⁻³ aqueous solution of barium chloride at 25 ^o C is 0.2382 Sm ⁻¹ ant the transport number of the barium ions in this electrolyte is 0.4375. Calculate the mobilities of barium and chloride ions [8 marks]			
	(b)	State two applications of conductometric methods.	[2 marks]		
2	.(a)	Consider an electrode that responds to the equilibrium between Oxygen, water and Hydroxide ions, according to the following reaction: $D_2(g) + 2H_2O(aq) + 4e^- + 4OH^-(aq)$ Derive an expression for the potential difference across the electrode nterface. [4 marks]			
	(b)	Using the electrode potentials, calculate the solubility of Ag at 25° C	gCl in moldm ⁻³ [4 marks]		
	(c)	Write the cell reaction and half-reaction for the following c AgNO ₃ +Fe(NO ₃) ₂ \checkmark Ag + Fe(NO ₃) ₃	ells reaction: [2 marks]		
3.	(a)	State the conditions of temperature and pressure in which the isotherm is strongly obeyed.	ne BET [2 marks]		
	(c)	Compare and contrast <i>physisorption</i> and <i>chemisorption</i> .	[6 marks]		

(c)	When is the term <i>sorption</i> used?	[2 marks]
(a)	Name three major techniques that are used in characteriz	ation of colloid
. /		• • • • • •

- a) Name three major techniques that are used in characterization of colloidal systems. Highlight the principle for each technique and briefly explain its application. [9 marks]
- (b) What is a sol? [1mark]

SECTION B

4.

Answer ALL questions from this section.

5.	(a)	With the aid of a diagram outline the moving boundary method for determining transport numbers for ions[6 marks]			
	(b)	With the aid of diagrams, describe the three models of the layer at the electrode/electrolyte interface	electric double [10 marks]		
	(c)	Write the cell reactions and half-reactions for the following (i) Sn SnCl ₂ (aq) MnCl ₂ (aq), HCl(aq) MnO ₂ (s) Pt (ii) Pt Fe ³⁺ (aq), Fe ²⁺ (aq) Sn ⁴⁺ (aq) Sn ²⁺ (aq) Pt	g cells: [4 marks]		
6.	(a)	Outline the formation of an electric double layer on the surface of a colloidal particle. State the prime role of the electric double layer and explain how this role is performed [4 marks]			

(b) From the principle of light scattering, explain why the sky is blue during the day [2 marks]

Disperse phase	Dispersion	Examples
	medium	
(b)	(c)	toothpaste
(d)	Solid	
(f)	(g)	
(h)	(i)	Fog
Gas	Solid	
(k)	(1)	
liquid	Solid	
(0)		milk
	Disperse phase (b) (d) (f) (h) Gas (k) liquid (o)	Disperse phase Dispersion medium (b) (c) (d) Solid (f) (g) (h) (i) Gas Solid (k) (l) liquid Solid (o) Value

(c) Copy and complete the following table:

[8 marks]

- (c) Calculate the ionic strength and the mean activity coefficient of $0.001 \text{ molkg}^{-1} \text{ CaCl}_2(\text{aq}) \text{ at } 25^{0}\text{C}.$ $\log \gamma_{\pm} = -|z_{-}z_{+}|AI^{\frac{1}{2}}, I = \frac{1}{2}\sum z_{i}^{2}m_{i}, A = 0.509/(molkg^{-1})^{\frac{1}{2}}$ [6 marks]
- 7. The data below show the pressure of CO needed for the value of adsorption on charcoal (corrected to 1 atm and 273K) to be 10cm³. Calculate the adsorption enthalpy at this surface coverage.

T/K	200	210	220	230	240	250
p/Torr	30.0	37.1	45.2	54.0	63.5	73.9

Hint:
$$\left(\frac{\partial \ln p}{\partial \left[\frac{1}{T}\right]}\right) = \frac{\Delta H_{ads}^{\theta}}{R}.$$

[20 marks]

END OF QUESTION PAPER !!!