

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY <u>DEPARTMENT OF APPLIED CHEMISTRY</u> <u>SUPPLEMENTARY EXAMINATIONS – AUGUST 2010</u> <u>PHYSICAL CHEMISTRY II – SCH 2204</u> <u>TIME: THREE HOURS (3 HRS)</u>

INSTRUCTIONS TO CANDIDATES

<u>MATERIAL</u> Reduction potential tables

INSTRUCTIONS TO STUDENTS Answer <u>All</u> questions.

$$\begin{split} R &= 8.314 \text{ JK}^{-1}\text{mol}^{-1} = 0.08205 \text{ dm}^3 \text{ atm}^{-1} \text{ K}^{-1}\text{mol}^{-1}.\\ F &= eN_A = 96 \text{ 485 C mol}^{-1}\\ 1 \text{ atm} &= 760 \text{ torr} = 760\text{ mmHg} = 101 \text{ 325 Pa}\\ \ln x &= 3.303\text{ logx} \end{split}$$

<u>SECTION A</u> Answer ALL questions. Each question carries 10 marks.

- 1. (a) The cell constant was given to be 0.400 cm^{-1} . A $0.100 \text{ moldm}^{-3} \text{ NH}_4\text{Cl}(\text{aq})$ solution had a resistance of 28.49 Ω . Calculate the molar conductivity of NH₄Cl(aq) at this concentration. [4 marks]
 - (b) The limiting molar conductivities of KCl, KNO₃, and AgNO₃ at standard conditions are 149.9 Scm²mol⁻¹, 145.0 Scm²mol⁻¹, and 133.4Scm²mol⁻¹, respectively. What is the limiting molar conductivity of AgCl at this temperature? [6 marks]
- 2. Calculate the ionic strength of an aqueous solution of Calcium chloride at 298K having a molality equal to 0.002 molkg⁻¹ and, using the Debye-Huckel limiting law, estimate
 - (a) The activity coefficients of the Ca^{2+} and Cl^{-} ions in this solution, and
 - (b) The mean activity coefficients of these ions

[10 marks]

[
$$I = \frac{1}{2} \sum m_i z_i^2$$
; $\log \gamma = -Az^2 \sqrt{I}$; $A = 0.51 kg^{\frac{1}{2}} mol^{\frac{1}{2}}$ for aqueous solutions at 298K]

- 3. (a) State the conditions of temperature and pressure in which the Langmuir isotherm is strongly obeyed. [2 marks]
 - (b) Derive the Langmuir's isotherm. Include the steps for its conversion to the linear form. [6 marks]
 - (c) When is the term *physisorption* used? [2 marks]
- 4. (a) State the size range of colloidal particles. What kind of particles are above and below this range. [2 marks]

(b) What is Rayleigh scattering?

[2 marks]

(b) Outline the formation of an electric double layer on the surface of a colloidal particle. State the prime role of the electric double layer and how this role is performed. [6 marks]

SECTION B

Answer ALL questions from this section.

5. (a) The cell Mg | Mg SO₄(aq, a = 1) || CuSO₄(aq, a = 1)| Cu was set up in a laboratory experiment.

Calculate	(i) the e.m.f of the cell at standard conditions
	(ii) the value of ΔG_r^{θ} for the cell reaction
	(iii) the equilibrium constant for the cell reaction.

Which electrode is more positive, and which way do electrons flow?

[8 marks]

- (b) Write the cell reactions and half-reactions for the following cells: (i) Pt | SnCl₂(aq), SnCl₂(aq) || MnCl₂(aq), HCl(aq) | MnO₂(s) | Pt (ii) Pt| Fe³⁺(aq), Fe²⁺(aq)|| Sn⁴⁺(aq) | Sn²⁺(aq) | Pt [6 marks]
- (c) Using electrode potentials, calculate the equilibrium constant for the following reactions at 25°C.

(i) $Sn(s) + SnCl_4(aq) \longrightarrow 2SnCl_2(aq)$ (ii) $Sn(s) + 2AgCl(s) \longrightarrow SnCl_2(aq) + 2Ag(s)$

[6 marks]

6. (a) State the four common kinds of electrodes used in electrochemical cells [4 marks]

- (b) State the two types of concentration cells and highlight the major difference between them [2 marks]
- (c) Draw a rough graph that describes the variation in the conductance of:
 (i) A strong acid titrated with a strong base
 (ii) A weak acid titrated with a strong base
 - (iii) A strong acid titrated with a weak base

[6 marks] State two titrimetric analyses in which conductometric methods may be more preferable. [2 marks]

(d) With the aid of a diagram, outline the moving boundary method for determining transport numbers of ions [6 marks]

- 7. The data below relates to the adsorption of carbon monoxide on charcoal at 273K. Confirm that they fit the Langmuir isotherm, and find:
 (a) The constant k
 - (b) The volume corresponding to complete coverage

In each case V has been corrected to 1 atm

P/Torr	100	200	300	400	500	600	700
V/cm ³	10.3	19.3	27.3	34.1	40.0	45.5	48.0

The Langmuir's isotherm: $\theta = \frac{kP}{(1+kP)}$

[20 marks]

END OF QUESTION PAPER!!!