

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY
SUPPLEMENTARY EXAMINATIONS - AUGUST 2014 PHYSICAL CHEMISTRY II-SCH 2204 FOR SCH AND TTE TIME: (3) THREE HOURS

INSTRUCTIONS TO CANDIDATES

Answer ALL questions
Answer each question on a FRESH page.

$$
\begin{aligned}
& \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.08205 \mathrm{dm}^{3} \mathrm{~atm}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} . \\
& \mathrm{F}=\mathrm{eN}_{\mathrm{A}}=96485 \mathrm{C} \mathrm{~mol}^{-1}
\end{aligned}
$$

1.

$\mathrm{N}_{2} \mathrm{O}_{5}$ decomposes according to the following equation

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Based on the following mechanism, and using the rate of formation of NO_{2}, devise the rate law for the decomposition process.

$$
\begin{array}{ll}
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}+\mathrm{NO}_{3} & k_{a} \\
\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5} & k_{a}{ }^{\prime \prime} \\
\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}+\mathrm{NO} & k_{b} \\
\mathrm{NO}+\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 3 \mathrm{NO}_{2} & k_{c}
\end{array}
$$

2.

a. A voltaic cell is set up at $25^{\circ} \mathrm{C}$ with the following half-cells: Al^{3+} $(0.0010 \mathrm{M}) \mid \mathrm{Al}$ and $\mathrm{Ni}^{2+}(0.50 \mathrm{M}) \mid \mathrm{Ni}$. Write an equation for the reaction that occurs when the cell generates an electric current, and determine the cell potential and calculate the equilibrium constant.
[12 marks]
b. Silver bromide is a sparingly soluble salt. The salt dissolves to give the following equilibrium: $\operatorname{AgBr}_{(\mathrm{s})} \rightleftharpoons \mathrm{Ag}^{+}{ }_{(\text {aq) }}+\mathrm{Br}_{(\text {aq) }}$. Form a cell that gives this net reaction and calculate its solubility product, K_{sp} and $\Delta_{\mathrm{R}} \mathrm{G}^{0}$ at 298 K .
[13 marks]
3.
a. Compare and contrast Chemisorption and Physisorption. Discuss procedures that you need to carry out to distinguish chemisorption from Physisorption.
[15 marks]
b. Discuss the assumptions of the Langmuir adsorption isotherm.
[10 marks]
4. Discuss what you understand by model fitting procedures and using examples explain their importance in chemical kinetics.
[25 marks]

Half-reaction

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{\prime}(\mathrm{aq})+8 \mathrm{H}^{\prime}(\mathrm{aq})+5 \mathrm{c}^{\circ} \rightarrow \quad \mathrm{Mn}^{2 *}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& \mathrm{Au}^{3}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \quad \mathrm{Au}(\mathrm{~s}) \\
& \mathrm{ClO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+8 \mathrm{c}^{-} \rightarrow \mathrm{Cl}^{(}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\Omega) \\
& \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \quad \rightarrow \quad 2 \mathrm{Cl}^{(}(\mathrm{aq}) \\
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{\circ} \quad \rightarrow \quad 2 \mathrm{Cr}^{3 \prime}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& 2 \mathrm{HNO}_{2}(\mathrm{aq})+4 \mathrm{H}^{\prime}(\mathrm{aq})+4 \mathrm{c}^{-} \rightarrow \quad \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Omega) \\
& \mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \rightarrow \quad \mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \quad 2 \mathrm{Br}(\mathrm{aq}) \\
& \mathrm{Hg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{*} \rightarrow \mathrm{Hg}(\Omega) \\
& \mathrm{ClO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{e}^{+} \rightarrow \quad \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{Ag}^{\prime}(\mathrm{aq})+\mathrm{e}^{-} \quad \rightarrow \quad \mathrm{Ag}(\mathrm{~s}) \\
& \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \quad \rightarrow \quad \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\Omega) \\
& \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \\
& \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{\prime}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}_{2}(\rho) \\
& \mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{c}^{-} \quad \rightarrow \quad 2 \mathrm{I}^{-}(\mathrm{aq}) \\
& \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\Omega)+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \\
& \mathrm{SO}_{4}{ }^{2}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\Omega) \\
& \mathrm{Sn}^{4{ }^{4}}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \\
& \mathrm{S}(\mathrm{~s})+2 \mathrm{H}^{\prime}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \\
& \mathrm{AgBr}(\mathrm{~s})+\mathrm{e}^{\mathrm{-}} \rightarrow \mathrm{Ag}(\mathrm{~s})+\mathrm{Br}(\mathrm{aq}) \\
& 2 \mathrm{H}^{\prime}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2(\mathrm{p})} \\
& \mathrm{Pb}^{2 *}(\mathrm{aq})+2 \mathrm{e}^{*} \rightarrow \mathrm{~Pb}(\mathrm{~s}) \\
& \mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{\mathrm{*}} \rightarrow \mathrm{Sn}(\mathrm{~s}) \\
& \mathrm{AgI}(\mathrm{~s})+\mathrm{e}^{*} \rightarrow \quad \mathrm{Ag}(\mathrm{~s})+\mathrm{I}^{\prime}(\mathrm{aq}) \\
& \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{~s}) \\
& \mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{~s}) \\
& \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{e}^{+} \rightarrow \mathrm{Pb}(\mathrm{~s})+\mathrm{SO}_{4}{ }^{2}(\mathrm{aq}) \\
& \mathrm{Se}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{Se}(\mathrm{aq}) \\
& \mathrm{Cd}^{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{~s}) \\
& \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \quad \rightarrow \quad \mathrm{Cr}^{2+}(\mathrm{aq}) \\
& \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{~s}) \\
& \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{S}^{2}(\mathrm{aq}) \\
& \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{\mathrm{s}} \quad \rightarrow \quad \mathrm{Zn}(\mathrm{~s}) \\
& 2 \mathrm{H}_{2} \mathrm{O}(\Omega)+2 \mathrm{e}^{-} \quad \rightarrow \quad \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}_{(\mathrm{aq})} \\
& \mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{~s}) \quad-0.91 \\
& \mathrm{Se}(\mathrm{~s})+2 \mathrm{e}^{-} \quad \rightarrow \quad \mathrm{Se}^{2}(\mathrm{aq}) \quad-0.92 \\
& \mathrm{SO}_{4}{ }^{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{e}^{-} \rightarrow \mathrm{SO}_{3}{ }^{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{~s}) \\
& \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{~s}) \\
& \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-} \\
& 2 \text { of } 2
\end{aligned}
$$

$E^{0}(V)$
$+1.51$
$+1.50$
$+1.39$
$+1.36$
$+1.33$
$+1.30$
$+1.23$
$+1.22$
$+1.07$
$+0.85$
$+0.84$
$+0.80$
$+0.80$
$+0.77$
$+0.70$
$+0.54$
$+0.40$
$+0.34$
$+0.17$
$+0.15$
$+0.14$
$+0.07$
0.00
-0.13
-0.14
-0.15
-0.26
-0.28
-0.36
-0.40
-0.40
-0.41
-0.45
-0.46
-0.69
-0.76
-0.83
-0.91
-0.92
-0.93
-1.66
-2.37
$+0.22$

