

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY <u>DEPARTMENT OF APPLIED CHEMISTRY</u> <u>SUPPLEMENTARY EXAMINATIONS – AUGUST 2014</u> <u>PHYSICAL CHEMISTRY II-SCH 2204 FOR SCH AND TTE</u> TIME: (3) THREE HOURS

INSTRUCTIONS TO CANDIDATES

Answer ALL questions Answer each question on a FRESH page.

$$R = 8.314 \text{ JK}^{-1} \text{mol}^{-1} = 0.08205 \text{ dm}^{3} \text{atm}^{-1} \text{ K}^{-1} \text{mol}^{-1}.$$

 $F = eN_A = 96 \text{ 485 C mol}^{-1}$

1. $N_2O_5 decomposes according to the following equation \\ 2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

Based on the following mechanism, and using the rate of formation of NO_2 , devise the rate law for the decomposition process.

$$N_{2}O_{5} \rightarrow NO_{2} + NO_{3}$$
 k_{a}
 $NO_{2} + NO_{3} \rightarrow N_{2}O_{5}$ k_{a}
 $NO_{2} + NO_{3} \rightarrow NO_{2} + O_{2} + NO$ k_{b}
 $NO + N_{2}O_{5} \rightarrow 3NO_{2}$ k_{c}

[25 marks]

2.

- a. A voltaic cell is set up at 25°C with the following half-cells: Al³+ (0.0010M)|Al and Ni²+(0.50M)|Ni. Write an equation for the reaction that occurs when the cell generates an electric current, and determine the cell potential and calculate the equilibrium constant. [12 marks]
- b. Silver bromide is a sparingly soluble salt. The salt dissolves to give the following equilibrium: $AgBr_{(s)} \rightleftharpoons Ag^+_{(aq)} + Br^-_{(aq)}$. Form a cell that gives this net reaction and calculate its solubility product, K_{sp} and $\Delta_R G^0$ at 298K.

3.

- a. Compare and contrast *Chemisorption* and *Physisorption*. Discuss procedures that you need to carry out to distinguish chemisorption from Physisorption.

 [15 marks]
- b. Discuss the assumptions of the Langmuir adsorption isotherm.

[10 marks]

4. Discuss what you understand by model fitting procedures and using examples explain their importance in chemical kinetics. [25 marks]

ATTACHMENT: STANDARD REDUCTION POTENTIALS AT 25°C

Half-reaction			$E^{o}(V)$
$MnO_4^-(aq) + 8H^+(aq) + 5e^-$	\rightarrow	$Mn^{2+}(aq) + 4H_2O(\ell)$	+1.51
$Au^{3+}(aq) + 3e^{-}$	\rightarrow	Au(s)	+1.50
$CIO_4^-(aq) + 8H^+(aq) + 8e^-$	\rightarrow	$Cl(aq) + 4H_2O(\ell)$	+1.39
$Cl_2(g) + 2e^{-}$		2Cl (aq)	+1.36
$Cr_2O_7^{2}(aq) + 14H^*(aq) + 6e^{-1}$	\rightarrow	$2Cr^{3+}(aq) + 7H_2O(\ell)$	+1.33
$2HNO_2(aq) + 4H^{\dagger}(aq) + 4e^{\cdot}$	\rightarrow	$N_2O(g) + 3H_2O(\ell)$	+1.30
$O_2(g) + 4H^+(aq) + 4e^-$	\rightarrow	2H ₂ O(<i>l</i>)	+1.23
$MnO_2(s) + 4H^+(aq) + 2e^-$		$Mn^{2+}(aq) + 2H_2O(\ell)$	+1.22
$Br_2(aq) + 2e^{-}$		2Br(aq)	+1.07
$Hg^{2+}(aq) + 2e^{-}$	\rightarrow	$Hg(\ell)$	+0.85
$ClO(aq) + H_2O(\ell) + 2e^{-\ell}$		$Cl^{-}(aq) + 2OH^{-}(aq)$	+0.84
$Ag^{+}(aq) + e^{-}$	\rightarrow	Ag(s)	+0.80
$NO_3^-(aq) + 2H^+(aq) + e^-$	\rightarrow	$NO_2(g) + H_2O(\ell)$	+0.80
$Fe^{3+}(aq) + e^{-}$	\rightarrow	Fe ²⁺ (aq)	+0.77
$O_2(g) + 2H^*(aq) + 2e^{-r}$	\rightarrow	$H_2O_2(\ell)$	+0.70
$I_2(s) + 2e^{-s}$	\rightarrow	2I (aq)	+0.54
$O_2(g) + 2H_2O(\ell) + 4e^{-\ell}$	\rightarrow	4OH (aq)	+0.40
$Cu^{2+}(aq) + 2e^{-}$	\rightarrow	Cu(s)	+0.34
$SO_4^{2}(aq) + 4H^+(aq) + 2e^-$	\rightarrow	H_2SO_3 (aq) + $H_2O(\ell)$	+0.17
$Sn^{4+}(aq) + 2e^{-}$	\rightarrow	Sn2+(aq)	+0.15
$S(s) + 2H^{*}(aq) + 2e^{-}$	\rightarrow	H ₂ S (aq)	+0.14
$AgBr(s) + e^{-}$	\rightarrow	Ag(s) + Br(aq)	+0.07
$2H^{+}(aq) + 2e^{-}$	\rightarrow	$H_{2(g)}$	0.00
$Pb^{2+}(aq) + 2e^{-}$	\rightarrow	Pb(s)	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-}$	\rightarrow	Sn(s)	-0.14
$AgI(s) + e^{-s}$	\rightarrow	$Ag(s) + \Gamma(aq)$	-0.15
$Ni^{2+}(aq) + 2e^{-}$	\rightarrow	Ni(s)	-0.26
$Co^{2+}(aq) + 2e^{-}$	\rightarrow	Co(s)	-0.28
$PbSO_4(s) + 2e^{-s}$	\rightarrow	$Pb(s) + SO_4^{2}(aq)$	-0.36
$Se(s) + 2H^{+}(aq) + 2e^{-}$	\rightarrow	H ₂ Se (aq)	-0.40
$Cd^{2+}(aq) + 2e^{-}$	\rightarrow	Cd(s)	-0.40
$Cr^{3+}(aq) + e^{-}$	\rightarrow	Cr2+(aq)	-0.41
$Fe^{2+}(aq) + 2e^{-}$	\rightarrow	Fe(s)	-0.45
$NO_2(aq) + H_2O(\ell) + e^{-\ell}$	\rightarrow	NO(g) + 2OH(aq)	-0.46
$Ag_2S(s) + 2e^{-s}$	\rightarrow	$2Ag(s) + S^2(aq)$	-0.69
$Zn^{2+}(aq) + 2e^{-}$	\rightarrow	Zn(s)	-0.76
$2H_2O(\ell) + 2e^{-\ell}$	\rightarrow	$H_2(g) + 2OH(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-}$	\rightarrow	Cr(s)	-0.91
$Se(s) + 2e^{-s}$	\rightarrow	Se2-(aq)	-0.92
$SO_4^{2}(aq) + H_2O(\ell) + 2e^{-\ell}$	\rightarrow	SO ₃ ² ·(aq) + 2OH·(aq)	-0.93
$A1^{3+}(aq) + 3e^{-}$	\rightarrow	Al(s)	-1.66
$Mg^{2+}(aq) + 2e^{-}$	\rightarrow	Mg(s)	-2.37
$AgCl(s) + e^{-}$	\rightarrow	$Ag(s) + Cl^{-}$	+0.22
2 of 2			