

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED CHEMISTRY

PHYSICAL CHEMISTRY II

SCH 2204

Second Semester Examination Paper

May 2016

This examination paper consists of 4 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Dr. S. Majoni

INSTRUCTIONS

- 1. Answer ALL questions in section A and any three (3) questions in section B
- 2. Each question in section A carries 10 marks and in section B carries 20 marks

MARK ALLOCATION

QUESTION	MARKS
A1.	10
A2.	10
A3.	10
A4.	10
B1	20
B2	20
В3	20
B4	20
TOTAL POSSIBLE MARKS	100

Copyright: National University of Science and Technology, 2016

SECTION A

1) The following data were collected for the rate of disappearance of NO and O₂ in the reaction: $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$

Exp. No	[NO] molL ⁻¹	$[O_2] molL^{-1}$	Initial rate (molL ⁻¹ s ⁻¹)
1	0.0126	0.125	1.41 x 10 ⁻²
2	0.0252	0.250	1.13 x 10 ⁻¹
3	0.0252	0.125	$5.64 \ge 10^{-2}$

Determine the rate law for the reaction.

[10 marks]

2) a) By means of an example, explain what is meant by the term reaction intermediate.

[3 marks]

b) Methyl acetate is hydrolyzed in solution according to the following equation $CH_3COOCH_3 + H_2O \xrightarrow{H^+} CH_3OH + CH_3COOH$

Given that the rate constant for the reaction at 25° C is $1.26 \times 10^{-4} s^{-1}$

- i) What is the order of the reaction. [1 mark]
- ii) What is the half-life of the reaction and how long will it take for 65% of the methyl acetate to react? [6 marks]
- 3) a) The concentration of NaCl in a solution that also contains Cu(NO₃)₂ is 0.0083 *m*, if the ionic strength of the solution is 0.015*m*, what are the concentrations of copper and nitrate ions? [5 marks]
 - b) If a reaction has a rate constant of $2.40 \times 10^{-3} \sec^{-1}$ at 273 K and $2.65 \times 10^{-3} \sec^{-1}$ at 298 K, what is the activation energy of the reaction? [5 marks]
- 4) a) With the aid of examples, explain the difference between a weak and a strong electrolyte. [4 marks]
 - b) A standard solution of KCl with a conductivity of $1.063 \times 10^{-6} Sm^{-1}$ at 298 K was used to calibrate a conductivity cell and a resistance of 4.22 Ω was measured. The same cell was filled with a solution of HCl, and a resistance of 1.033 Ω was measured. Calculate the conductivity of the HCl solution. [6 marks]

Copyright: National University of Science and Technology, 2016

Page 2 of 4

SECTION B

The data below shows the molar conductivities of sodium acetate as a function of concentration in aqueous solution at 298 K. From the data, is sodium acetate a strong or weak electrolyte and what is the value of Λ[°]_m? [20 marks]

Concentration (M)	$\Lambda_{\rm m}({\rm S~m^2~mol^{-1}})$
0.0005	0.00892
0.001	0.00885
0.005	0.00857
0.01	0.00838
0.02	0.00812
0.05	0.00769

 The composition of a liquid-phase reaction, 2A→B, was followed by a spectrophotometric method with the following results.

t (min)	[<i>B</i>] (mol/L)
0	0
10	0.089
20	0.153
30	0.200
40	0.230

- a) What are the conditions required for a reaction to be monitored by spectrophotometric methods. [2 marks]
- b) Determine the order of the reaction and the rate constant, thus write the rate law in the form of $rate = k[A]^n$. [18 marks]
- 3) a) Discuss the importance of the wave particle duality in quantum chemistry

[4 marks]

- b) What do you understand by the term quantization of energy? Explain how the principle of quantization of energy forms the basis of spectrometry.[4 marks]
- c) For the electrochemical cell represented as:

Pt(s) | H₂(g, f = 1.00bar) | HCl(aq, m) | AgCl(s) | Ag(s)

Copyright: National University of Science and Technology, 2016

(i) Write down the half-cell reactions in the cell above. [3 marks]

- (ii) How does the value of the cell potential vary as HCl concentration is varied from
 - 0.01 *m*, to 0.001 *m*, to 0.01 *m*? [9 marks]

4) Enzyme catalyzed reactions can be represented as $E + S \xrightarrow[-k_1]{k_1} ES \xrightarrow{k_2} P + E$

- d) An enzyme is a homogenous catalyst. Explain what is a homogeneous catalyst and, using a potential energy diagram, describe how a catalyst increases the rate of a chemical reaction. [6 marks]
- e) Identify indermediate(s) and the catalyst in the above equation and, using steady state approximation, show that the rate equation, rate = $\left(\frac{k_2k_1[S][E]}{k_{-1}+k_2}\right)$ can be obtained by using either the reactant or the product. [14 marks]

Copyright: National University of Science and Technology, 2016