	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES DEPARTMENT OF APPLIED CHEMISTRY PHYSICAL CHEMISTRY II FOR SCH & TTE		
	FITISICAL CILLWISTATITION SCIT & TTE		
	SCH2204		
Supplementary Examination Paper			
August 2015			

This examination paper consists of 4 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Dr. Stephen Majoni

INSTRUCTIONS

- 1. Answer ALL questions.
- 2. Each question carries 25 marks

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
TOTAL	100

Copyright: National University of Science and Technology, 2014

 (a) The resistance of 0.01M NaCl solution at 25^oC is 200 Ohm. The cell constant of the conductivity cell is unity. Calculate the molar conductivity of the solution.

[5 marks]

(b) The limiting molar conductivities of NaCl, HCl, and C₂H₅COONa are 126.45, 426.16 and 91 S cm² mol⁻¹ respectively. Calculate the limiting molar conductivity of C₂H₅COOH. [5 marks]

(c)
$$Cr_2O_7^{2-}(aq) + 14H_3O^+(aq) + 6I^-(aq) \rightarrow 2Cr^{3+}(aq) + 3I_2(s) + 21H_2O(l)$$

The above equation represents an overall reaction for a galvanic cell.

- i) Draw a line diagram for the cell and calculate the standard cell potential.
- ii) At pH 0, with $[Cr_2O_7^{2-}] = 1.5$ M and $[\Gamma] = 0.40$ M, the cell potential is 0.87 V. Calculate the concentration of $Cr^{3+}(aq)$ in the cell. [15 marks]
- 2. H_2O_2 reacts with ozone in the presence of CFCs according to the following equation:

$$H_2O_2 + O_3 \rightarrow H_2O + 2O_2$$

The following reaction mechanism has been proposed:

$$\begin{aligned} StepI : H_2O_2 &\xrightarrow{k_1} H_2O + O \\ StepII : O + CF_2Cl_2 &\xrightarrow{k_2} ClO + CF_2Cl \\ StepIII : ClO + O_3 &\xrightarrow{k_3} Cl + 2O_2 \\ StepIV : Cl + CF_2Cl &\xrightarrow{k_4} CF_2Cl_2 \end{aligned}$$

a) With good reasoning, identify the role of the CFCs in the reaction. [5 marks]

Copyright: National University of Science and Technology, 2014

- b) Apply steady state approximation to the intermediates and give expressions for their concentrations
 [20 marks]
- 3. (a) A plot of $\ln k vs \frac{1}{T}$ for a certain chemical reaction yielded a straight line with the following equation $y = -6.2 \times 10^3 x + 13.85$

Find the activation energy for the reaction[5 marks](b) If the activation energy for a reaction is 268 kJ mol⁻¹ and the rate constant at 660K is $8.1 \times 10^{-3} s^{-1}$ what will be the rate constant at 690 K?[8 marks]

- (c) The decomposition of A to produce B can be written as $A \rightarrow B$. When the initial concentration of A is 0.012 M, the rate is 0.0018M min⁻¹ and when the initial concentration of A is 0.024 M, the rate is 0.0036M min⁻¹. What is the rate law for the reaction? [6 marks]
- (d) Cyclopropane, C₃H₆, is converted to its isomer propylene, when heated. The rate law is first order in cyclopropane with a rate constant of $6.0 \times 10^{-4} s^{-1}$ at 500°C. If the initial concentration of cyclopropane is 0.0226 M, what is the concentration after 899 s? [6 marks]
- 4. (a) Giving examples, discuss the applications of Kohlrausch's law of independent migration of ions. [10 marks]
 - (b) Using electrode potentials, calculate the equilibrium constants for the following reactions at 25°C.

(i) $SnCl_2(aq) + 2AgCl(s) \longrightarrow SnCl_4(aq) + 2Ag(s)$

- (ii) $Hg(l) + Cu(NO_3)_2(aq) \longrightarrow Cu(s) + Hg(NO_3)_2(aq)$ [6 marks]
- (c) Derive the linearized form of the Langmuir's adsorption isotherm. [9 marks]

Copyright: National University of Science and Technology, 2014

SCH 2204

3of 4

Useful Information

Reaction	E ^o /volts
$Cr_2 O_7^{2-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 7H_2O$	1.36
$Cu^{2+} + 2e^- \rightleftharpoons Cu(s)$	0.339
$I_2(aq) + 2e^- \rightleftharpoons T 2I^-$	0.620
$Hg^{2+}(aq) + 2e^{-} \rightleftharpoons Hg(l)$	0.852
$AgCl(s) + e^{-} \rightleftharpoons Ag(s) + Cl^{-}$	0.222
$Ag^+ + e^- \rightleftharpoons Ag(s)$	0.799
$Sn^{2+} + 2e^- \rightleftharpoons Sn(s)$	-0141
$Sn^{4+} + 2e^- \rightleftharpoons Sn^{2+}$	0.139
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.236
$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	0.0000

End of Question Paper!!!

Copyright: National University of Science and Technology, 2014

4of 4