NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF APPLIED CHEMISTRY
BACHELOR OF SCIENCE HONOURS DEGREE
END OF SECOND SEMESTER EXAMINATIONS - JUNE 2010
MECHANICAL ENGINEERING - SCH 2205
TIME: 3 HOURS

Instructions to candidates

Answer any five (5) Questions. Each question carries 20 marks.

1. (a) Define the following quantities giving their appropriate units:
(i) Shear stress
(ii) Young's modulus
(b) State and explain two equilibrium conditions, giving the corresponding equation.
(c) Two round rods, one steel and the other brass, are joined end to end. Each rod is 0.500 m and 2.00 cm in diameter. The combination is subjected to a tensile force with magnitude 4000N. For each rod, what is:-
(i) The strain.
(ii) The elongation.
(iii) The Young's Modulus
(ii) Draw a stress- strain graphs for the two rods on the same axis.
2. (a) At the instant the traffic light turns green, an Automobile starts with a constant acceleration a of $2.2 \mathrm{~m} / \mathrm{s}^{2}$. At the same instant a truck traveling with a constant speeds of $9.5 \mathrm{~m} / \mathrm{s}$, overtakes and passes the Automobile.
(i) How far beyond the traffic signal will the car overtake the Automobile?
(ii) How fast will the car be traveling at that instant.
(iii) Plot a well labeled velocity- time graph for the two on the same axis.
(b) A car travels 20.0 km due North and then 35.0 km in the direction 60.0^{0} west of north. Find the magnitude and direction of the car's resultant displacement.
(c) Show that the following equation is dimensionally consistent.
$P+1 / 2 \rho v^{2}+\rho g y=a$ constant
Where;-
$\rho=$ density, $v=$ velocity, $g=$ acceleration; $p=$ pressure $; y=$ height
3. (a) There is 0.600 kg of 190 proof alcohol in each 0.750 L bottle. Flowing as an idealized fluid in a pipe, this alcohol has a mass flow rate that will fill 160 of these bottles per minute. At point two in the pipe, the gauge pressure is 152 kPa and the cross section area is $8.00 \mathrm{~cm}^{2}$. At point one 1.81 m above point two, the cross sectional area is $2.00 \mathrm{~cm}^{2}$. Find:-
(i) Mass flow rate
(ii) Volume flow rate
(iii) The speeds at point 1 and 2 .
(iv) Gauge pressure at point 1 .
(b) A 40 kg box initially at rest is pushed 5.0 m along a rough horizontal floor with a constant applied horizontal force of 130 N . If the coefficient of friction between box and floor is 0.30 . Find:-
(i) The work done by the applied force.
(ii) The energy loss due to friction.
(iii) The change in kinetic energy of the box.
(iv) The final speed of the box.
4. (a) A nylon tennis string on a racquet is under tension of 250 N . If it has a diameter of 1.00 mm , by how much is it lengthened from its un-tensioned length of 30.0 cm ? (Young's modulus for nylon is $5 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$).
(b) A Puck of mass 0.5 kg moves along the \mathbf{x} axis with a velocity of $4.00 \mathrm{~m} / \mathrm{s}$. It collides elastically with another stationary Puck. After the collision the first Puck moves with a velocity of $2.00 \mathrm{~m} / \mathrm{s}$ making an angle $\boldsymbol{\alpha}$ with the horizontal. The other Puck makes an angle $\boldsymbol{\beta}$ below the horizontal and moves at a velocity V_{2}.
(i) Find V_{2} and
(ii) $\quad \alpha$ and β
(c) A 3.0kg mass starts from rest and slides a distances \mathbf{d} down a frictionless 30° incline, where it contacts an unstressed spring of negligible mass. The mass slides an additional 0.20 m as it is brought momentarily to rest by compressing the spring ($k=400 \mathrm{~N} / \mathrm{m}$). Find the initial separation \mathbf{d} between mass and spring.
5. (a) Ethanol has a density $\rho=791 \mathrm{~kg} / \mathrm{m}^{3}$ and it flows smoothly through a horizontal pipe that tapers in cross sectional area from $\mathrm{A}_{1}=1.20 \times 10^{-3} \mathrm{~m}^{2}$ to $\mathrm{A}_{2}=\mathrm{A}_{1} / 2$. The pressure difference between the wide and narrow sections of pipe is 4120 Pa . What is the volume flow rate R_{v} of the ethanol?
(b) A ball is shot from the ground into air. At a height of 9.1 m its velocity is:-

$$
\mathbf{V}=[7.6 \mathbf{i}+6.1 \mathbf{j}] \mathrm{m} / \mathrm{s} .
$$

(i) To what maximum height does the ball rise?
(ii) What total horizontal distance does the ball travel
(iii) What is the magnitude and direction of the velocity just before touching the ground
(c) Consider two vectors $\mathbf{A}=3 \mathbf{i}-2 \mathbf{j}$ and $\mathbf{B}=-\mathbf{i}-4 \mathbf{j}$. Calculate:
(i) $\mathrm{A}+\mathrm{B}$
(ii) $\mathrm{A}-\mathrm{B}$
6. (a) A 5.0 kg block is set into motion up an inclined plane with an initial speed of $8.00 \mathrm{~m} / \mathrm{s}$. The block comes to rest after travelling 3.0 m along the plane, which is inclined at an angle of 30° to the horizontal.
Determine:-
(i) The change in the block's kinetic energy.
(ii) The change in its potential energy.
(iii) The frictional force exerted on it (assumed to be constant.
(b) An unstable nucleus of mass $17 \times 10^{-27} \mathrm{~kg}$ initially at rest disintegrates into three particles. One of the particles, of mass $5.0 \times 10^{-27} \mathrm{~kg}$, moves along the \mathbf{y} axis with a speed of $6.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Another particle, of mass $8.4 \times 10^{-}$ ${ }^{27} \mathrm{~kg}$ moves along the \mathbf{x} axis with a speed of $4.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Find:
(i) The velocity of the third particle.
(ii) The total energy given off in the processes.
7. (a) A 3.70kg mass rest on a rough inclined plane ($\mu_{\mathrm{k}}=0.5$) that makes an angle 30° to the horizontal and is connected to a vertically suspended mass of 2.30 kg through a frictionless pulley. What are:-
(i) The magnitude of the acceleration of each block
(ii) The direction of acceleration of hanging block
(iii) The tension in the cord
(b) You throw a ball towards a wall with a speed $25.0 \mathrm{~m} / \mathrm{s}$ and at an angle 40° above the horizontal. The wall is 22 m from release point of the ball.
(i) How far above the release point does the ball hit the wall?
(ii) What are the horizontal and vertical components of its velocity as it hits the wall.
(iii) When it hits the wall has it passed the highest point on its trajectory?

