

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY BACHELOR OF SCIENCE HONOURS DEGREE END OF SECOND SEMESTER EXAMINATIONS – JUNE 2010 MECHANICAL ENGINEERING – SCH 2205 TIME: 3 HOURS

Instructions to candidates

Answer any <u>five (5)</u> Questions. Each question carries 20 marks.

1.	(a)	Define the following quantities giving their appropriate units:		
		(i) Shear stress	[2]	
		(ii) Young's modulus	[2]	
	(b)	State and explain two equilibrium conditions, giving the corre equation.	sponding [4]	
	(c)	Two round rods, one steel and the other brass, are joined end to end. Each rod is 0.500m and 2.00cm in diameter. The combination is subjected to a tensile force with magnitude 4000N. For each rod, what is:-		
		(i) The strain.	[2]	
		(ii) The elongation.	[2]	
		(iii) The Young's Modulus	[4]	
	(ii)	Draw a stress- strain graphs for the two rods on the same axis.	[4]	
2.	(a)	At the instant the traffic light turns green, an Automobile starts with a constant acceleration a of 2.2m/s^2 . At the same instant a truck traveling with a constant speeds of 9.5m/s, overtakes and passes the Automobile.		
		(i) How far beyond the traffic signal will the car over Automobile?	take the [4]	
		(ii) How fast will the car be traveling at that instant.	[4]	

- (iii) Plot a well labeled velocity- time graph for the two on the same axis. [4]
- (b) A car travels 20.0km due North and then 35.0km in the direction 60.0° west of north. Find the magnitude and direction of the car's resultant displacement. [4]
- (c) Show that the following equation is dimensionally consistent.

$$\begin{split} P + 1/2\rho v^2 + \rho gy &= a \text{ constant} \\ \text{Where;-} \\ \rho &= \text{density, } v = \text{velocity, } g = \text{acceleration; } p = \text{pressure; } y = \text{height} \quad [4] \end{split}$$

3. (a) There is 0.600kg of 190 proof alcohol in each 0.750L bottle. Flowing as an idealized fluid in a pipe, this alcohol has a mass flow rate that will fill 160 of these bottles per minute. At point two in the pipe, the gauge pressure is 152kPa and the cross section area is 8.00cm². At point one 1.81m above point two, the cross sectional area is 2.00cm². Find:-

(i)	Mass flow rate	[2]
(ii)	Volume flow rate	[2]
(iii)	The speeds at point 1 and 2.	[2]
(iv)	Gauge pressure at point 1.	[2]

(b) A 40kg box initially at rest is pushed 5.0m along a rough horizontal floor with a constant applied horizontal force of 130N. If the coefficient of friction between box and floor is 0.30. Find:-

(i)	The work done by the applied force.	[2]
(ii)	The energy loss due to friction.	[2]
(iii)	The change in kinetic energy of the box.	[4]
(iv)	The final speed of the box.	[4]

4. (a) A nylon tennis string on a racquet is under tension of 250 N. If it has a diameter of 1.00 mm, by how much is it lengthened from its un-tensioned length of 30.0cm? (Young's modulus for nylon is $5 \times 10^9 \text{ N/m}^2$). [2]

(b) A Puck of mass 0.5kg moves along the **x** axis with a velocity of 4.00m/s. It collides elastically with another stationary Puck. After the collision the first Puck moves with a velocity of 2.00m/s making an angle α with the horizontal. The other Puck makes an angle β below the horizontal and moves at a velocity V₂.

(i) Find
$$V_2$$
 and [5]

(ii)
$$\alpha$$
 and β [6]

- (c) A 3.0kg mass starts from rest and slides a distances **d** down a frictionless 30^{0} incline, where it contacts an unstressed spring of negligible mass. The mass slides an additional 0.20m as it is brought momentarily to rest by compressing the spring (k = 400N/m). Find the initial separation **d** between mass and spring. [7]
- 5. (a) Ethanol has a density $\rho = 791 \text{kg/m}^3$ and it flows smoothly through a horizontal pipe that tapers in cross sectional area from A₁=1.20 x 10⁻³ m² to A₂ = A₁/2. The pressure difference between the wide and narrow sections of pipe is 4120Pa. What is the volume flow rate R_v of the ethanol? [5]
 - (b) A ball is shot from the ground into air. At a height of 9.1m its velocity is: V = [7.6i + 6.1j] m/s.
 - (i) To what maximum height does the ball rise? [3]
 - (ii) What total horizontal distance does the ball travel [4]
 - (iii) What is the magnitude and direction of the velocity just before touching the ground [4]
 - (c) Consider two vectors $\mathbf{A} = 3\mathbf{i} 2\mathbf{j}$ and $\mathbf{B} = -\mathbf{i} 4\mathbf{j}$. Calculate:

(ii)
$$A - B$$
 [2]

- 6. (a) A 5.0kg block is set into motion up an inclined plane with an initial speed of 8.00m/s. The block comes to rest after travelling 3.0m along the plane, which is inclined at an angle of 30^{0} to the horizontal. Determine:-
 - (i) The change in the block's kinetic energy. [4]
 - (ii) The change in its potential energy. [4]
 - (iii) The frictional force exerted on it (assumed to be constant. [4]

(b)	An unstable nucleus of mass 17×10^{-27} kg initially at rest disintegrates into three particles. One of the particles, of mass 5.0 x 10^{-27} kg, moves along the y axis with a speed of 6.0 x 10^{6} m/s. Another particle, of mass 8.4 x 10^{-27} kg moves along the x axis with a speed of 4.0 x 10^{6} m/s. Find:		
	(i)	The velocity of the third particle.	[4]
	(ii)	The total energy given off in the processes.	[4]
(a)	A 3.70kg mass rest on a rough inclined plane (μ_k = 0.5) that makes an angle 30 [°] to the horizontal and is connected to a vertically suspended mass of 2.30kg through a frictionless pulley. What are:-		an led mass
	(i)	The magnitude of the acceleration of each block	[3]
	(ii)	The direction of acceleration of hanging block	[2]
	(iii)	The tension in the cord	[2]
(b)	b) You throw a ball towards a wall with a speed 25.0m/s and at an ang above the horizontal. The wall is 22m from release point of the ball.		ingle 40 ⁰ ll.
	(i)	How far above the release point does the ball hit the wall?	[4]

7.

- (ii) What are the horizontal and vertical components of its velocity as it hits the wall. [4]
- (iii) When it hits the wall has it passed the highest point on its trajectory? [4]

END OF QUESTION PAPER !!!!!