

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGYDEPARTMENT OF APPLIED CHEMISTRYBACHELOR OF SCIENCE HONOURS DEGREEEND OF SECOND SEMESTER EXAMINATIONS – JUNE 2011

POLYMER SCIENCE II – SCH 2207

TIME: THREE (3) HOURS

INSTRUCTIONS TO STUDENTS

- 1. ANSWER <u>ALL</u> QUESTIONS FROM SECTION A AND <u>ANY THREE</u> FROM SECTION B. SECTION A CARRIES 40 MARKS AND EACH QUESTION IN SECTION B CARRIES 20 MARKS.
- 2. START EACH QUESTION ON A NEW PAGE.
- 3. GRAPH PAPER WILL BE PROVIDED ON REQUEST.

TOTAL MARKS = 100

THIS QUESTION PAPER CONSISTS OF *THREE PRINTED PAGES* (ON ONE SIDE ONLY) INCLUDING THE TOP PAGE WITH THE INSTRUCTIONS.

<u>SECTION A</u>: (Answer all questions in this section)

1.	a)	Differentiate between an ideal solution and a regular solution.	(6 marks)	
	b)	What are colligative properties of materials? Give examples.	(4 marks)	
	c)	Name five properties of a polymer that are dependent on the molec	e molecular weight.	
			(5 marks)	
	d)	Give an expression of an ideal solution in thermodynamic terms i.e	e. using Gibbs energy.	
	,	1	(4 marks)	
			(
	e)	Name five factors that affect the dissolution of a polymer.	(5 marks)	
	f)	What do you understand by molecular weight distribution (MWD) of a polymer?		
			(3 marks)	
	g)	Draw a polymer Stress/Strain graph and indicate the following: Dilatant Substance;		
	•	Newtonian Fluid and Pseudoplastic Material.	(5 marks)	
	h)	Explain the relationship between CED and Solubility Parameter.	(4 marks)	
	i)	What information about a polymer can we learn from using: IR-Sp NMR?	bectroscopy and Proton (4 marks)	

(4 marks)

<u>SECTION B:</u> (Choose and answer three questions from this section)

- 2. Explain the underlying principles of any two of the following methods of a) polymer analysis;
 - differential thermal analysis i)
 - differential scanning calorimeter ii)
 - x-ray diffraction analysis iii)
 - spectroscopic method of analysis (20 marks) iv)
- If the average molecular weight (M_n) of LDPE is 2.4×10^5 , what is the value of 3. a) the degree of polymerization (DP) of the polymer? (6 marks)

- b) List these in order of decreasing value: M_v ; M_w ; M_z and M_n . (4 marks)
- c) What are the M_n and M_w values for a mixture of five molecules each having the following molecular weights: 1.25×10^6 , 1.35×10^6 , 1.50×10^6 , 1.75×10^6 and 2.00×10^6 ? (10 marks)

(20marks)

- 4. Estimate the solubility parameters of the following materials using SMALL/HOY attraction constants given below:
 - a) CH₃--C=CH
 C=N
 CH₃HHH
 | | |
 b) -[-O-●-C-●-O-C-C-C-]| | | |
 CH₃ H OHH
- *●- 6-member ring

<u>—</u> 0—	114.98
<u>—</u> <i>C</i> =	117.12
— <i>CH</i> ₂ —	131
> <i>CH</i> —	85.99
6-member ring	-23.44
ОН	225.84
<u>—</u> <i>C</i> —	32.03

Density of polymer: 1.15g/cm⁻³

- 5. a) Outline the three stages of formation of a polymer crystal from a dilute solution. (12 marks)
 - b) Name four parameters that affect Tg. (4 marks)
 - c) Differentiate between crystalline and amorphous polymers. (4 marks)

End of question Paper