	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES DEPARTMENT OF APPLIED CHEMISTRY PRINCIPLES OF PROCESS ENGINEERING			
	SCH 2218			
Supplementary Examination Paper				
July 2016				

This examination paper consists of 3 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Engr S Mudono

INSTRUCTIONS

- 1. Answer **ALL** questions
- 2. Each question carries 25 marks
- 3. Use of calculators is permissible

MARKS ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
TOTAL	100

Page 1 of 3

Copyright: National University of Science and Technology, 2016

SCH2218 Principles of Process Engineering

QUESTION 1

- A. With the aid a diagram, explain Newtonian and Non-Newtonian Fluids, highlighting their differences.
 [8]
- B. $2x10^5$ kg/h of apple juice having a density of 1.85 g/cm³ and a viscosity of 120×10^{-3} Pa.s is to be pumped through a 200 mm internal diameter steel pipe 1.5 km long. The delivery end of the pipe is 10 m below the intake.
 - i. Calculate the pressure drop due to friction. [9]
 - ii. If the overall efficiency for the pump is 70 %, what should be the HP of the pump motor? (1 HP = 0.747 kW) [5]
 - iii. If the electricity costs 9.86 cents per kWh, calculate the annual cost of pumping the oil for 300 days a year. [3]

$$\frac{\Delta P_{fr}}{\rho g} = h_{fr} = \frac{4fLv^2}{2gd}; f = \frac{16}{Re} (laminar), f = 0.04 Re^{-0.4} (turbulent)$$
$$\frac{\Delta P_{net}}{\rho g} = h_{fr} + \frac{v^2}{2g} + h_{lift}$$

QUESTION 2

- A. Define equimolar counter diffusion with the aid of a well labeled. [6]
- B. Calculate the rate of diffusion of acetic acid (A) across a film of non-diffusing water (B) solution 1 mm thick at 17°C when the concentrations on opposite sides of the film are 9 wt% (density = 1.012 kg/m^3) and 3 wt % (density = 1.003 kg/m^3) acid respectively. The diffusivity of acetic acid in the solution is $0.95 \times 10^{-9} \text{ m}^2/\text{s}$. [19] M_W of water = 18; M_W of acetic acid = 60

$$N_A = \frac{D_{AB}}{Z X_{BM}} \left(\frac{\rho}{M}\right)_{av} (x_{A1} - X_{A2})$$

Page 2 of 3

Copyright: National University of Science and Technology, 2016

SCH2218 Principles of Process Engineering

QUESTION 3

A. Explain what is meant by:

i.	Blackbody	[3]
ii.	Gray body	[3]

- B. Sketch a dry rate versus moisture content curve and explain each of the regions. [12]
- C. What is the heat content of a 5 kg tomato soup concentrate at 30°C above a reference temperature of 0°C.? The specific heat capacity of the soup is 5.025 kJ/kg.K. [7]

QUESTION 4

- A. Discuss the factors to be considered when selecting a solvent during liquid-liquid extraction.
 [8]
- B. Counter current extraction system is being used to extract oil from 1 500 kg/h cotton seeds. The system is to be designed to extract oil from cotton seeds with 22 % oil and provide 50 % oil in the extract solution leaving at 1 200 kg/h. If the weight of the extract solution in solids leaving the system is equal to 50 % of the weight of solids, compute the composition of stream containing solids leaving the first stage and the composition of solvent entering stage 1.
- C. Explain the importance of distillation in process engineering operations. [5]

END OF EXAMINATION QUESTION PAPER!!!!!!!

Page 3 of 3

Copyright: National University of Science and Technology, 2016

SCH2218 Principles of Process Engineering