NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY
END OF SECOND SEMESTER EXAMINATIONS: TTE-MAY 2013
ANALYTICAL CHEMISTRY III - SCH 4206
TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES

Answer ANY FOUR questions out of FIVE questions provided.
Each question carries 25 marks.

1. (i) What is a super critical fluid?
[2 marks]
(ii) Discuss the advantages of supercritical fluid extraction (SFE) over solvent extraction.
(iii) Differentiate between the following terms as used in solvent extraction.
(a) An exhaustive and countercurrent extraction.
[5 marks]
(b) Distribution coefficient and distribution ratio.
[5 marks]
(iv) What are the main disadvantages of solvent extraction.
[5 marks]
2. (i) Discuss the differences and advantages that microwave digestion has over wet ashing using conventional heating.
[10 marks]
(ii) The K_{d} for a weak acid between water and diethyl ether is found to be 800 and its K_{a} in water is 1.50×10^{-5}. Calculate the analytical concentration of HA remaining in an aqueous solution after 50.0 ml of 0.0500 M HA is extracted with 25.0 ml of ether, assuming the aqueous solution is buffered to a pH of (a) 2.00 and (b) 8.00. [15 marks]
3. (i) What is a masking agent and how does it function? [10 marks]
(ii) What are the steps involved in obtaining a laboratory sample? [15 marks]
4. (a) In the analysis of environmental samples, briefly describe what do the following terms mean and how are they determined experimentally?
(i) Total Organic Content (TOC)
(ii) Chemical Oxygen Demand (COD)
[5 marks]
(b) Name any four sources of error and explain how they can be minimized. [15 marks]
5. (a) The distribution coefficient for X between chloroform and water is 9.6. Calculate the concentration of X remaining in the aqueous phase after 50.0 ml of 0.150 M X is treated by extracting with the following quantities of chloroform.
(i) One 40.0 ml portion
(ii) Two 20.0 ml portions
(iii) Four 10.0 ml portions
(iv) Eight 5.00 ml portions
(b) Derive the expression that relates the distribution ratio, D , to the distribution coefficient, K_{D} and the dissociation constant K_{A}.
[10 marks]

End of examination

