

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED CHEMISTRY BACHELOR OF SCIENCE HONOURS DEGREE END OF FIRST SEMESTER EXAMINATIONS – MAY 2014 REACTOR TECHNOLOGY – SCH 4208 (FOR TTE STUDENTS ONLY) TIME: 3 HOURS

Instructions to candidates:

- 1. Answer all questions in Section A and any three questions in Section B.
- 2. Show all your steps clearly in any calculation
- 3. Start the answers for each question on a new page.

Additional material:

Graph paper

SECTION A

1 (a) (i) State the law of conservation of mass (ii) In what circumstances is the law of conservation of mass restricted. [10] State and explain three factors that affect the rate of reaction. [10] **(b)** 2 (a) With the aid of examples, distinguish between elementary and non (i) elementary reactions. [8] For any two types of reactors, discuss the advantages and limitations of (ii) each type of reactor. [8] (iii) What type of reactor is preferred if the rate of heat evolution is high. Explain your answer [4]

SECTION B

and 0.44 mole of CO₂ formed.

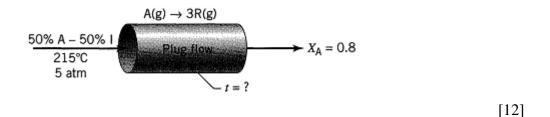
3 (a) With the aid of a diagram describe the main features of a batch reactor. [5]

(b) In a process for the production of hydrogen required for the manufacture of ammonia, natural gas is to be reformed with steam according to the reactions:

 $CH_4 + H_2O \rightleftharpoons CO + 3H_2, \quad K_p \text{ (at 1173 K)} = 1.43 \times 10^{13} \text{ N}^2/\text{m}^4$ $CO + H_2O \rightleftharpoons CO_2 + H_2, \quad K_p \text{ (at 1173 K)} = 0.784$

[15]

The natural gas is mixed with steam in the mole ratio $1CH_4 : 5H_2O$ and passed into a catalytic reactor which operates at a pressure of 3 MN/m² (30 bar). The gases leave the reactor virtually at equilibrium at 1173 K. Show that for every 1 mole of CH₄ entering the reactor, 0.950 mole reacts,

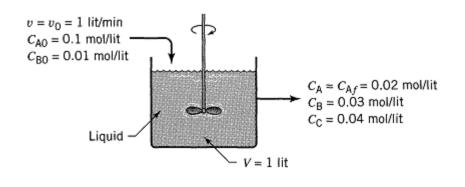

1

4 (a) Fixed-bed reactors and fluidized-bed reactors are some of the most important industrial reactors. With the aid of sketch diagrams explain their mode of operation and where they are applied. [10]

(b) A homogeneous gas reaction A \rightarrow 3R has a reported rate at 215°C

 $-r_{\rm A} = 10^{-2} C_{\rm A}^{1/2}$, [mol/liter · sec]

Find the space time needed for 80% conversion of a 50% A -50% inert feed to a plug flow reactor operating at 215° C and 5 atm (C_{AO} = 0.0625 mol/liter)



5 (a) (i) Explain the term **mixed flow** as applied to mixed flow reactors.

(ii) Give another name that is commonly used for mixed flow reactor

[5]

- (b) Give two examples of solid catalyzed reactions, write balanced equations for each. [5]
- (c) One liter per minute of liquid containing A and B ($C_{AO} = 0.10$ mol/liter, $C_{BO} = 0.01$ mol/liter) flow into a mixed reactor of volume V = 11iter. The materials react in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B, and C ($C_{Af} = 0.02$ mol/liter, $C_{Bf} = 0.03$ mol/liter, $C_{Cf} = 0.04$ mol/liter), as shown in the figure below. Find the rate of reaction of A, B, and C for the conditions within the reactor.

[10]

 (a) Any type of reactor with known contacting pattern may be used experimentally to explore the kinetics of catalytic reactions. List the five experimental methods you have studied.

6

(b) The catalytic reaction A → 4R is run at 3.2 atm and 118°C in a plug flow reactor which contains 0.01kg of catalyst and uses a feed consisting of the partially converted product of 20 liters/hour of pure unreacted A. The results are as follows:

Run	1	2	3	4
C_{Ain} , mol/liter	0.100	0.080	0.060	0.040
C_{Aout} , mol/liter	0.084	0.070	0.055	0.038

Use a graphical method to find the rate equation to represent this reaction. [15]

End of question Paper!!!

3