

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY

REACTOR TECHNOLOGY

SCH 4208

Supplementary Examination Paper

August 2015

This examination paper consists of 4 pages

Time Allowed: 3 hours Total Marks: 100 Special Requirements: Graph paper Examiner's Name: Mr. B. Nyoni

INSTRUCTIONS

- 1. Answer all questions in Section A and any other three questions from Section B.
- 2. Show steps clearly in any calculation.
- 3. Start the answers for each question on a fresh page.
- 4. Use of calculators is permissible.

MARK ALLOCATION

QUESTION	MARKS
1.	20
2.	20
3.	20
4.	20
5.	20
TOTAL	100

Copyright: National University of Science and Technology, 2015

SCH 4208

SECTION A

- **1 (a)** (i) State the law of conservation of mass
 - (ii) In what circumstances is the law of conservation of mass restricted. [8 marks]
 - (b) In a process for the production of hydrogen required for the manufacture of ammonia, natural gas is to be reformed with steam according to the reactions:

 $CH_4 + H_2O \Longrightarrow CO + 3H_2, \quad K_p \text{(at 1173 K)} = 1.43 \times 10^{13} \text{ N}^2/\text{m}^4$ $CO + H_2O \Longrightarrow CO_2 + H_2, \quad K_p \text{(at 1173 K)} = 0.784$

The natural gas is mixed with steam in the mole ratio $1CH_4 : 5H_2O$ and passed into a catalytic reactor which operates at a pressure of 3 MN/m² (30 bar). The gases leave the reactor virtually at equilibrium at 1173 K.

Show that for every 1 mole of CH_4 entering the reactor, 0.950 mole reacts, and 0.44 mole of CO_2 formed. [12 marks]

- **2 (a)** (i) With the aid of examples, distinguish between elementary and non-elementary reactions. [8 marks]
 - (ii) For any two types of reactors, discuss the advantages and limitations of each type of reactor. [8 marks]
 - (iii) What type of reactor is preferred if the rate of heat evolution is high? Explain your Answer. [4 marks]

Copyright: National University of Science and Technology, 2015

SCH 4208

SECTION B

3 (a) With the aid of a diagram describe the main features of a batch reactor. [5 marks]

(**b**) The reaction described by the data in the following table is to be carried out in a PFR at 500 K and 830 kPa. The entering molar flow-rate of A is 0.4 mol/s. Use a graphical method to determine the volume of the reactor.

Conversion, Y	C 0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{\rm A}$ (mol/m ³ .s)	0.45	0.37	0.30	0.195	0.113	0.079	0.05

[15 marks]

- 4 (a) Fixed-bed reactors and fluidized-bed reactors are some of the most important industrial reactors. With the aid of sketch diagrams explain their mode of operation and where they are applied. [8 marks]
 - (b) A bed in a fixed bed reactor consists of uniform spherical particles of diameter 3mm and density 4200kg/m^3 . What will be the minimum fluidisation velocity in a liquid of viscosity 3 x 10⁻³ Ns/m² and density 1100 kg/m³?

The Reynolds number N_{Re} at the fluidisation velocity is given by:

 $N_{Re} = 25.7[\sqrt{(1 + 5.53 \times 10^{-5} N_{Ga})} - 1]$

N_{Ga} is the Galileo number, given by;

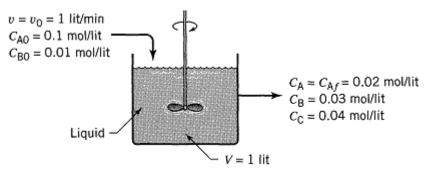
$$N_{Ga} = D^3 \rho (\rho_s - \rho) g / \mu^2$$

where:

D – diameter of particle

- ρ_s particle density
- ρ fluid density
- g acceleration due to gravity
- μ viscosity of fluid

[12 marks]


Copyright: National University of Science and Technology, 2015

SCH 4208

5 (a) (i) Explain the term **mixed flow** as applied to mixed flow reactors.

(ii) Give another name that is commonly used for mixed flow reactor. [5 marks]

(b) One liter per minute of liquid containing A and B ($C_{AO} = 0.10$ mol/liter, $C_{BO} = 0.01$ mol/liter) flow into a mixed reactor of volume V = 11iter. The materials react in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B, and C ($C_{Af} = 0.02$ mol/liter, $C_{Bf} = 0.03$ mol/liter, $C_{Cf} = 0.04$ mol/liter), as shown in the figure below. Find the rate of reaction of A, B, and C for the conditions within the reactor.

[15 marks]

- (a) Any type of reactor with known contacting pattern may be used experimentally to explore the kinetics of catalytic reactions. List the five experimental methods you hav studied.
 - (b) The catalytic reaction A → 4R is run at 3.2 atm and 118°C in a plug flow reactor which contains 0.01kg of catalyst and uses a feed consisting of the partially converted product of 20 liters/hour of pure unreacted A. The results are as follows:

Run	1	2	3	4
C_{Ain} , mol/liter C_{Aout} , mol/liter	$0.100 \\ 0.084$	0.080 0.070	0.060 0.055	$0.040 \\ 0.038$

Use a graphical method to find the rate equation to represent this reaction.

[15 marks]

End of Question Paper!!!

Copyright: National University of Science and Technology, 2015

SCH 4208

6