

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY

REACTOR TECHNOLOGY

SCH 4208

Second Semester Examination Paper

May 2016

This examination paper consists of 5 pages

Time Allowed: 3 hours Total Marks: 100 Special Requirements: Graph paper Examiner's Name: Mr. B. Nyoni

INSTRUCTIONS

- 1. Answer all questions in Section A and any other three questions from Section B
- 2. Each question carries 20 marks
- 3. Show steps clearly in any calculation
- 4. Start the answers for each question on a fresh page
- 5. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	20
2	20
2.	20
3.	20
4.	20
-	
5.	20
TOTAL POSSIBLE MARKS	100

Copyright: National University of Science and Technology, 2016

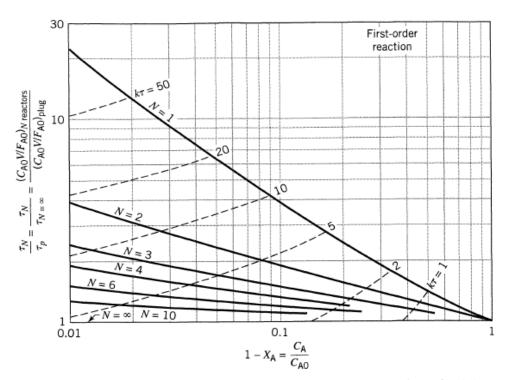
SCH4208

SECTION A

- **1.** (a) (i) State the law of conservation of mass.
 - (ii) In what circumstances is the law of conservation of mass restricted. [4]
 - (b) The catalytic reaction A → 4R is run at 3.2 atm and 120°C in a plug flow reactor which contains 0.01kg of catalyst and uses a feed consisting of the partially converted product of 20 litres/hour of pure un-reacted A. The results are as follows:

Run	1	2	3	4
C_{Ain} , mol/liter C_{Aout} , mol/liter	$0.100 \\ 0.084$	$0.080 \\ 0.070$	$0.060 \\ 0.055$	$0.040 \\ 0.038$

Use a graphical method to find the rate equation to represent this reaction. [16]


2. (a) Define the following terms:

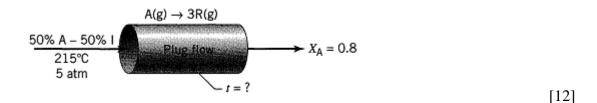
(i) reaction rate,	
(ii) order of reaction, and	
(iii) rate constant	[6]

- (b) With the aid of one example each, distinguish between:
 - (i) homogeneous and heterogeneous reactions
 - (ii) first order and pseudo first order reactions [8]
- (c) The figure overleaf shows a comparison of performance of a series of N equal-size mixed flow reactors (CSTRs) with a single plug flow reactor for the first order reaction. With respect to the figure explain why the volume of a number of mixed flow reactors in series is theoretically the same as an equivalent volume of a single plug flow reactor.

Copyright: National University of Science and Technology, 2016

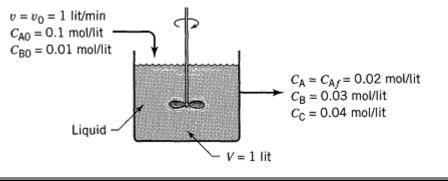
SCH4208

Comparison of performance of a series of N equal-size mixed flow reactors with a plug flow reactor for the first-order reaction


Copyright: National University of Science and Technology, 2016

SECTION B

- **3.** (a) With the aid of a flowchart diagram describe the main features of the Kompogas thermophilic dry digestion process. [5]
 - (b) Derive the performance equation of a batch reactor. [15]
- **4.** (a) Fixed-bed reactors and fluidized-bed reactors are some of the most important industrial reactors. With the aid of sketch diagrams explain their mode of operation and where they are applied. [6]
 - (b) A homogeneous gas reaction A \longrightarrow 3R has a reported rate at 215°C


 $-r_{\rm A} = 10^{-2} C_{\rm A}^{1/2}$, [mol/liter · sec]

Find the space time needed for 80% conversion of a 50% A -50% inert feed to a plug flow reactor operating at 215° C and 5 atm (C_{AO} = 0.0625 mol/liter).

(c) Explain why inerts are introduced into a reactor as feed.

- **5.** (a) Explain the term **mixed flow** as applied to mixed flow reactors. [4]
 - (b) One liter per minute of liquid containing A and B ($C_{AO} = 0.10$ mol/liter, $C_{BO} = 0.01$ mol/liter) flow into a mixed reactor of volume V = 1 liter. The materials react in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B, and C ($C_{Af} = 0.02$ mol/liter, $C_{Bf} = 0.03$ mol/liter, $C_{Cf} = 0.04$ mol/liter), as shown in the figure below. Find the rate of reaction of A, B, and C for the conditions within the reactor.

Copyright: National University of Science and Technology, 2016

[12]

[2]

- (c) Distinguish between elementary and non elementary reactions.
- **6.** The following equilibrium data was obtained for the adsorption of copper ions using a certain commercial adsorbent.

t (min)	0	20	40	60	80	100	120
t/qt	-	451.4	735.1	992.9	1187.6	1384.8	1550.4
$\log(q_e - q_t)$	-1.11	-1.48	-1.63	-1.77	-1.99	-2.28	-

(a) Test the data for pseudo first and second-order kinetics and evaluate k_1 and k_2 if the models are as follows:

 $\log(q_e - q_t) = \log q_e - \frac{k_1 t}{2.303}$ (pseudo first-order model) $\frac{t}{q_t} = \frac{1}{k_2 {q_e}^2} + \frac{1}{q_e} t$ (pseudo second-order model)

- where: q_e is the amount of copper ion adsorbed per gram of adsorbent at equilibrium (mg/g), q_t is the amount of copper ion adsorbed per gram of adsorbent (mg/g) at time t, k_1 is the pseudo first-order rate constant (min⁻¹) and k_2 is the pseudo second-order rate constant (g/mg.min). [15]
 - (b) With the aid of a diagram, describe the type of reactor you will employ for the adsorption operation in industry. [5]

END OF PAPER