NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY SMA 1101

FACULTY OF APPLIED SCIENCES
DEPARTMENT OF APPLIED MATHEMATICS
\section*{SMA1101: CALCULUS}

Exam

JANUARY 2008
Time: 3 hours

Candidates should attempt ALL questions from section A and ANY THREE questions from Section B.

SECTION A

A1. (a) Is it possible for the statement $\lim _{x \rightarrow 1} f(x)=4$ to be true, and yet $f(1)=2$? Explain your answer.
(b) Evaluate the following limits:
(i) $\lim _{x \rightarrow 3^{+}} \frac{x^{2}-9}{|x-3|}$
(ii) $\lim _{x \rightarrow-\infty} x e^{x}$.
(iii) $\lim _{x \rightarrow \infty}\left(\frac{2 x-3}{3 x-7}\right)^{4}$.

A2. (a) Solve the inequality

$$
\sqrt{x}-3 \leq \frac{2}{\sqrt{x}-2}
$$

(b) Solve $4|x|=|x-1|$.

A3. Show that the function

$$
f(x)= \begin{cases}\sin \pi x, & x \leq 1 \\ \mathrm{x}^{3}-1, & x>1\end{cases}
$$

is continuous but not differentiable at $x=1$.

A4. Given $f(x)=\frac{3}{5 x^{2}}$, find $f^{\prime}(x)$ from first principles.

A5. State Lebniz's rule, and hence find $y^{(6)}$ if $y(x)=e^{2 x} \sin x$.

A6. Prove that

$$
\lim _{x \rightarrow \infty} \int_{0}^{2 \pi} \frac{\sin n \pi}{x^{2}+1} d x=0
$$

A7. Prove that

$$
\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\frac{\pi}{4}
$$

SECTION B

B8. (a) Given that $t=\tan \frac{x}{2}$, show that $\sin x=\frac{2 t}{1+t^{2}}$.
(b) Hence or otherwise evaluate

$$
\int \frac{d x}{2+2 \cos x-\sin x}
$$

(c) The region bounded by the parabola $y=x^{2}$ and the line $y=2 x$ in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.
(d) If $C_{m}=\int_{0}^{\frac{\pi}{2}} \cos ^{m} x d x$, use integration by parts to show that C_{m} satisfies the reduction formula

$$
C_{m}=\frac{m-1}{m} C_{m-2}, \quad m \geq 2
$$

B9. (a) Find the real and imaginary parts of $\frac{e^{(a+i b) x}}{a+i b}$, where $a, b \in \Re$.
[7]
(b) Find the modulus and the argument of each root of the equation $z^{2}+4 z+8=0$. If the roots are denoted by α and β, simplify the expression:

$$
\frac{\alpha+\beta+4 i}{\alpha \beta+8 i}
$$

(c) Apply DeMoivre's theorem to evaluate the integral

$$
\int e^{-2 x} \sin 5 x d x
$$

B10. (a) State Rolle's Theorem.
(b) State and prove the Mean Value Theorem.
(c) Hence, prove that $\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}$ if $a<b$.
(d) Hence, show that $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$.

B11. (a) State when a function is one to one.
(b) If $f(x)=x^{2}-10 x+16,2<x<8$
(i) Find $f(-1)$ and $f(3)$.
(ii) Find the range of $f(x)$.
(iii) After suitably restricting the domain of $f(x)$, find $f^{-1}(x)$ and state its domain.
(iv) If $g(x)=\sqrt{x^{2}-8 x+16}$ find $(g \circ f)(x)$.
(c) Prove that $\lim _{x \rightarrow 3} \frac{9-x^{2}}{x-3}=6$

