NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY SMA 1101

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED MATHEMATICS

SMA1101: CALCULUS

Exam

JANUARY 2008 Time : 3 hours

Candidates should attempt ${\bf ALL}$ questions from section A and ${\bf ANY}$ THREE questions from Section B.

SECTION A

A1. (a) Is it possible for the statement $\lim_{x \to 1} f(x) = 4$ to be true, and yet f(1) = 2? Explain your answer. [2]

(b) Evaluate the following limits:

(i)
$$\lim_{x \to 3^+} \frac{x^2 - 9}{|x - 3|}$$
 [3]
(ii) $\lim_{x \to \infty} xe^x$. [3]

(iii)
$$\lim_{x \to \infty} \left(\frac{2x-3}{3x-7}\right)^4.$$
 [3]

A2. (a) Solve the inequality

$$\sqrt{x} - 3 \le \frac{2}{\sqrt{x} - 2}$$

(b) Solve 4|x| = |x - 1|.

page 1 of 3

[4]

[3]

A3. Show that the function $f(x) = \begin{cases} \sin \pi x, & x \le 1\\ x^3 - 1, & x > 1 \end{cases}$ is continuous but not differentiable at x = 1. [3]A4. Given $f(x) = \frac{3}{5x^2}$, find f'(x) from first principles. [6]**A5.** State Lebniz's rule, and hence find $y^{(6)}$ if $y(x) = e^{2x} \sin x$. [5]A6. Prove that $\lim_{x \to \infty} \int_0^{2\pi} \frac{\sin n\pi}{x^2 + 1} dx = 0$ [5]A7. Prove that $\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}$ [3]SECTION B **B8.** (a) Given that $t = \tan \frac{x}{2}$, show that $\sin x = \frac{2t}{1+t^2}$. [4](b) Hence or otherwise evaluate $\int \frac{dx}{2+2\cos x - \sin x}$

- (c) The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the y axis to generate a solid. Find the volume of the solid. [5]
- (d) If $C_m = \int_0^{\frac{\pi}{2}} \cos^m x dx$, use integration by parts to show that C_m satisfies the reduction formula m-1

$$C_m = \frac{m-1}{m} C_{m-2}, \quad m \ge 2$$

[5]

[6]

(a) Find the real and imaginary parts of $\frac{e^{(a+ib)x}}{a+ib}$, where $a, b \in \Re$. **B9**. [7](b) Find the modulus and the argument of each root of the equation $z^2 + 4z + 8 = 0$. If the roots are denoted by α and β , simplify the expression: $\frac{\alpha + \beta + 4i}{\alpha\beta + 8i}.$ [7](c) Apply DeMoivre's theorem to evaluate the integral $\int e^{-2x} \sin 5x dx.$ [6]B10. (a) State Rolle's Theorem. [2](b) State and prove the Mean Value Theorem. [7](c) Hence, prove that $\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}$ if a < b. [7](d) Hence, show that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$. [4]B11. (a) State when a function is one to one. [2](b) If $f(x) = x^2 - 10x + 16, 2 < x < 8$ (i) Find f(-1) and f(3). [1,1](ii) Find the range of f(x). [4](iii) After suitably restricting the domain of f(x), find $f^{-1}(x)$ and state its domain. [5](iv) If $g(x) = \sqrt{x^2 - 8x + 16}$ find $(g \circ f)(x)$. [3](c) Prove that $\lim_{x \to 3} \frac{9 - x^2}{x - 3} = 6$ [4]

END OF QUESTION PAPER