NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY SMA 1102

DEPARTMENT OF APPLIED MATHEMATICS

BSc Honours in Applied Mathematics: Part I
LINEAR ALGEBRA.

SUPPLEMENTARY EXAMINATION JULY 2005

Time: 3 hours

Answer any five questions. All questions carry equal marks

Q1. (a) Given that

$$A = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 3 & 6 & 9 & 6 \\ 4 & 8 & 12 & k \end{pmatrix},$$

find the value(s) of k so that

- (i) R(A) = 1
- (ii) R(A) = 2
- (iii) R(A) = 3.

|7

- (b) Prove that if $A = [a_{ij}]$ is of order $m \times n$ and if $B = [b_{ij}]$ is of order $n \times p$, then $(AB)^t = B^t A^t$ [5]
- (c) Solve the following system of equations using the LU decomposition:

$$\begin{array}{rcl} x+2y+3z & = & 5 \\ 2x+5y+3z & = & 3 \end{array}$$

x + 8z = 17

[8]

Q2. (a) The following forces act on a particle at
$$P$$
 whose position vector is $3i + j - 2k$.: $F_1 = 2i - 3j + 5k$, $F_2 = 3i - 2j - k$.

_		
		(i) Find the magnitude of the resultant force of the forces acting on the parti-
1		cle. [2]
	1	(ii) Write down the direction cosines of this resultant force. [1]
		iii) Find the orthogonal projection of F_1 on F_2 . [4]
		iv) When F_2 is applied to the particle alone, the object moves from P to a $\widehat{\mathcal{P}}$ Gotht, Q , with position vector $2i + 3k$. Find the work done. [3]
	((v) If the resultant force acts at the point $A(2,3,-1)$ find the moment of the resultant force about the point $B(3,2,2)$. [4]
	(b) S	Show that the lines given by the vector equations
		$r = 10i + 2j + 3k + \lambda(2i - 3j + k)$
	8	and .
		$\mathbf{r} = 3\mathbf{i} - \mathbf{j} - 2\mathbf{k} + \mu(\mathbf{i} + 3\mathbf{j} + \mathbf{k})$
	i	ntersect and find the position vector of the point of intersection. [6]
		[U]
Q3.	(a) I	The planes
		x + 2y + z = 5 and $3x - y + 2z = 2$
	iı	intersect on the line L .
	((i) Find the angle between the planes. [4]
	(ii) Find the equation of L in
		(a) parametric form,
		(b) cartesian form.
	(1.) 12	[5]
	(D) F	Find the vector equation of the plane which is perpendicular to the vector $\mathbf{i} - 6\mathbf{j} - 2\mathbf{k}$ which passes through the point with position vector $2\mathbf{i} - \mathbf{j} - \mathbf{k}$. [3]
		M. A. A. M.
		* * *
		Prove that if a, b, c form three edges of a parallelepiped all meeting at the une point then the volume of this figure is given by
		$ (a \times b).c .$
		[3]
	(e) If	a = 3i + 2j + 5k, b = i - 3j - 2k, c = 2i - j + 4k, find the volume of the par-
	al	llelepiped formed by the vectors. [3]
O4	(a) C	iron that the contain
Q4.	(a) G	iven that the matrix (1 2 3)
		$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 4 & 8 & \lambda \end{pmatrix}.$
		$\begin{pmatrix} 4 & 8 & \lambda \end{pmatrix}$

is singular, find the value(s) of λ .

page 2 of 4

- (b) Suppose that M is invertible and say it is row reducible to the identity matrix I by the sequence of elementary operations $e_1, ..., e_n$.
 - (i) Show that the sequence of elementary row operations to I yields M^{-1} .
 - (ii) Use this result to find the inverse of

$$M = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix},$$

(c) Solve the following system of equations using the LU decomposition method:

$$2x_1 + 6x_2 + 2x_3 = 4$$
$$-3x_1 - 8x_2 = 2$$
$$4x_1 + 9x_2 + 2x_3 = 5$$

[9]

[8]

Q5. (a) Write the vector V = (1, -2, 5) as a linear combination of the vectors

$$(1,1,1), (1,2,3), (2,-1,1).$$

[7]

(b) Find the conditions on a,b and c so that $(a,b,c)\in \mathbf{R}^3$ belongs to the space generated by

$$u_1 = (2, 1, 0), \quad u_2 = (1, -1, 2), \quad u_3 = (0, 3, -4).$$

[7]

- (c) Prove that if $S = v_1, v_2,v_n$ is a basis for a vector space V, then every subset W with more than n elements is linearly dependent. [6]
- Q6. (a) Solve the following system of equations using the Gauss-Jordan elimination method

$$x + 2y - 3z = 3$$

$$2x - y - z = 11$$

$$3x + 2y + z = -5$$

[7]

(b) For the system

$$x + y + \alpha z = 0$$

$$x + y + \beta z = 0$$

$$\alpha x + \beta y + z = 0,$$

- (i) show that it has non-trivial solution if and only if $\alpha = \beta$.

[4] [4]

- (ii) find the non-trivial solutions, if $\alpha = 2$.
- (c) Write the matrix $E = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$ as a linear combination of the matrices
- $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}.$

[5]

- (a) Let u, v and w be independent vectors. Show that u + v, u v and u 2v + w are
 - (b) Find a basis for the space spanned by the sequence of vectors:

$$v_1 = (1, -2, 0, 0, -3), \quad v_2 = (2, -5, -3, -2, 6),$$

 $v_3 = (0, 5, 15, 10, 0), \quad v_4 = (2, 6, 18, 8, 6).$

[5]

(c) Let V be the space generated by the polynomials

$$v_1 = t^3 - 2t^2 + 4t + 1$$

$$v_2 = 2t^3 - 3t^2 + 9t - 1$$

$$v_3 = t^3 + 6t - 5$$

$$v_4 = 2t^3 - 5t^2 + 7t + 5$$

Find

- (i) basis of V
- (ii) dimension of V.
- (d) Find the rank of the matrix

[6]

$$A = \begin{pmatrix} 1 & -3 & 1 & 2 \\ 1 & -2 & 3 & -1 \\ 2 & -3 & -4 & 1 \\ 3 & 0 & -15 & -3 \end{pmatrix}.$$

[4]

END OF QUESTION PAPER

page 4 of 4