NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY SMA 1202

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF APPLIED MATHEMATICS

REAL ANALYSIS

MARCH 2003

Time: 3 hours

Candidates should attempt ${\bf ALL}$ questions from Section A and ${\bf ANY}$ THREE questions from Section B.

SECTION A: Answer ALL questions in this section [40].

A1. Investigate the behavior (by sketching the graph) of the following sequence.

$$S_n = \left\{ \begin{array}{ll} \frac{n}{n+1} & , & \text{when } n \text{ is odd} \\ 1 - \frac{1}{n} & , & \text{when } n \text{ is even} \end{array} \right.$$

If the sequence is convergent, state its limit l.

[5]

[2]

- **A2.** (a) When is a function f said to be continuous at a point x_0 ?
 - (b) Show that if f and g are both continuous functions at a point x_0 , then
 - (i) the function f + g is continuous at x_0 ,
 - (ii) the function fg is continuous at x_0 .

[4,4]

- A3. (a) What condition must a continuous function f satisfy for its inverse f^{-1} to exist? [2]
 - (b) Suppose $y = \cosh^{-1}(x)$. Obtain the derivative $\frac{dy}{dx}$.

[~]

- **A4.** Let X be a nonempty set. Define what is meant by a metric d on X. For each of the following pairs (X, d) determine whether d is a metric on the set X. (You should show either that all the axioms for a metric hold, or that one of the axions
 - (a) $X = \mathbb{R}, d(x, y) = |\sin x \sin y|, (x, y \in \mathbb{R}).$
 - (b) X =the set of triples (x_1, x_2, x_3) where x_i is 0 or 1, d(x, y) =the number of values of $i = \{1, 2, 3\}$ such that $x_i \neq y_i$ [10] $(x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in X).$
- A5. Define a Cauchy sequence. Prove that the following sequence is Cauchy:

$$x = 1, \quad x_{n+1} = \frac{1}{2 + x_n}.$$

[10]

SECTION B: Answer FOUR questions in this section [60].

B6. (a) Let

fails.)

$$f(x) = \begin{cases} \frac{|x-2|}{x-2} & , & \text{if } x \neq 2\\ 0 & , & \text{if } x = 2 \end{cases}$$

- (i) Give a sketch of the graph of f(x).
- (ii) Find $\lim_{x \to 2^+} f(x)$.
- (iii) Find $\lim_{x \to 2^-} f(x)$.
- (iv) Find $\lim_{x\to 2} f(x)$.
- (b) Consider a sequence $\{s_n\}$ given by

$$s_1 = 1$$
, and $s_{n+1} = \frac{s_n}{1 + s_n}$

- (i) Find the limit l of $\{s_n\}$.
- (ii) If f(x) = 2 + x, write out the first five terms of the (new) sequence and show $\{f(s_n)\}\$ and show that f(l) is the limit of this sequence.

B7. Consider the sequence defined by

equence defined by
$$x_1 = 1, \quad x_2 = 2, \quad \text{and, for } n > 2, \quad x_n = \frac{1}{2}[x_{n-1} + x_{n-2}].$$

(a) Show by induction that

$$|x_n - x_{n+1}| = \frac{1}{2^{n-1}}$$

and hence deduce that if m>n then $|x_n-x_m|<\frac{1}{2^{n-1}}$. Hence show that the sequence is a Cauchy sequence.

(b) Given that the odd terms of the sequence are

$$x_{2n+1} = 1 + \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots + \frac{1}{2^{2n-1}}$$

find the limit of the sequence.

[15]

B8. (a) Let $\{x_n\}$ be a sequence of real numbers satisfying

(i)
$$x_1 = \frac{1}{2}$$

(ii)
$$x_{n+1} = \frac{1}{2-x_n}$$

Show that the sequence tends to a limit and evaluate the limit.

(b) Show that the sequence $\{a_n\}$ given by

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log(n+1)$$

converges to a limit l, say

Hence or otherwise, evaluate the series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

[15]

B9. (a) Use the Binomial Theorem to show that for a fixed constant b > 0 and positive integer n:

$$(1+b)^n \ge 1 + nb.$$

(b) Suppose that a > 1. Writing

$$a^{\frac{1}{n}} = 1 + b_n$$
 (which serves to define b_n),

use (a) to show that as
$$n \to \infty, b_n \to 0$$
. Deduce that $a^{\frac{1}{n}} \to 1$ [15]

B10. (a) State the Mean Value Theorem.

Using this or otherwise, show that if f is continuous on [a,b] and differentiable on (a,b) and $f'(x)=0, \forall x\in(a,b)$ then f is a constant on [a,b]

(b) Find $\lim_{x\to 0} \frac{1}{x} \left(x - \frac{1}{x} \right)$

(c) Show that if g(x) is given by

$$g(x) = \begin{cases} x \cos \frac{1}{x} & , & \text{if } x \neq 0 \\ 0 & , & \text{if } x = 0 \end{cases}$$

then g(x) has no derivative at 0, but is continuous there.

[15]

B11. (a) Prove that for x > 0 and any $k \in \mathbb{N}$

$$x - \frac{1}{2}x^2 + \dots + \frac{(-1)^{2k-1}}{2k}x^{2k} < \log(1+x) < x - \frac{1}{2}x^2 + \dots + \frac{x^{2k+1}}{2k+1}$$

(b) Evaluate

$$\lim_{x \to 0} \frac{(\cos bx) \ln(1+x^2) - x^2}{x^6}.$$

(c) Use Taylor's Theorem with n=2 to approximate

$$\sqrt[3]{1+x}, \quad x > -1.$$

[15]

END OF QUESTION PAPER

page 4 of 4 $\,$