NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF APPLIED SCIENCES
 DEPARTMENT OF APPLIED MATHEMATICS

ENGINEERING MATHEMATICS 1B

MAY 2006

Time : 3 hours

Candidates should attempt ALL questions from Section A and ANY THREE questions from Section B.

SECTION A: Answer ALL questions in this section [40].

A1. The pressure P of an enclosed ideal gas is given by

$$
P=k\left(\frac{T}{V}\right)
$$

where V is the volume, T is the temperature and k is a constant. Given that the percentage errors in measuring T and V are at most 0.6% and 0.8% respectively, find the approximate maximum percentage error in P.

A2. For the function

$$
F(x, y, z)=x y^{2} z^{3}+(x-3)^{5}(y+2)^{7}(z-1)^{11}
$$

find the equations for the tangent plane and normal line at the point $(3,-2,1)$.

A3. Given the function $f(x, y, z)=x+\frac{x-y}{y-z}$ find $f_{x}+f_{y}+f_{z}$ in its simplest form.

A4. Determine whether or not the following vectors in R^{3} are linearly dependent or independent:

$$
[1,3,2], \quad[-3,11,4], \quad[-2,4,1] .
$$

A5. (a) Find the adjoint of the matrix

$$
B=\left(\begin{array}{ccc}
5 & 2 & 4 \\
3 & -1 & 2 \\
1 & 4 & -3
\end{array}\right)
$$

(b) Hence find B^{-1}.

A6. By making a suitable substitution, show that the differential equation

$$
\frac{d y}{d x}=\frac{1-3 x-3 y}{1+x+y}
$$

can be solved by the variables - separable technique. Hence find the general solution. [8]

SECTION B: Answer THREE questions in this section [60].

B7. (a) Find and classify the stationary points of the function

$$
f(x, y)=x^{3}+y^{3}-63 x-63 y+12 x y
$$

(b) The temperature T at any point (x, y, z) in space is $T=400 x y z^{2}$. Find the highest temperature on the surface on the unit sphere $x^{2}+y^{2}+z^{2}=1 . \quad[12,8]$

B8. (a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
T=\left(\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right)
$$

(b) For what values of λ and m does the system

$$
\begin{array}{rlr}
2 x-y+4 z & = & 1 \\
x+2 y-z & = & m \\
6 x-2 y+\lambda z & = & -4
\end{array}
$$

have
(i) a unique solution?
(ii) no solution?
(iii) infinitely many solutions?

In the case that it has infinitely many solutions, find them.

B9. (a) What conditions on the constants a, b, e and f must be satisfied for the differential equation

$$
(a x+b t) \frac{d x}{d t}+e x+f t=0
$$

to be exact, and what is the solution of the equation when they are satisfied?
(b) Solve

$$
y^{\prime}-\frac{4}{(x+2)} y=(x+2)^{5}
$$

subject to the condition $y(0)=8$.
(c) Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference of temperature between the object and the surroundings. Suppose water at a temperature of $100^{\circ} \mathrm{C}$ cools to $80^{\circ} \mathrm{C}$ in 10 minutes, in a room maintained at a temperature of $30^{\circ} \mathrm{C}$, find when the temperature will become $40^{\circ} \mathrm{C}$.

B10. (a) Use the method of variation of parameters to find a general solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{t^{2}+1}
$$

(b) Use the method of undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=\sin x
$$

with $y(0)=1, y^{\prime}(0)=1$.

