NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF APPLIED MATHEMATICS

1 2003 P

EXAMINATION

TIME:

MATHEMATICAL METHODS

3 HOURS

ANSWER ${\bf ANY}$ FOUR QUESTIONS WITH AT LEAST ONE QUESTION FROM EACH SECTION

SECTION A:

1 Given the boundary value problem

 $y'' + \lambda y = 0$, y(0) + y'(0) = 0, y(1) = 0

(i) Determine whether $\lambda = 0$ is an eigenvalue.

[5]

(ii) Find the determinantal equation satisfied by the nonzero eigenvalues. Show that there is an infinite sequence of such eigenvalues and that

 $\lambda_n = \frac{(2n+1)^2 \pi^2}{4}$

for large n.

[12]

- (iii) Find an approximate value for λ_1 , the nonzero eigenvalue of smallest absolute value. [8]
- 2. (i) Consider the boundary value problem

 $y'' + \lambda y = 0$, y'(0) = 0, y(1) + y'(1) = 0.

The nonzero eigenvalues λ_n of this problem satisfy the determinantal equation

$$\sqrt{\lambda_n} = \cot \sqrt{\lambda_n}$$

and the corresponding eigenfunctions are $\phi_n(x) = k_n \cos \sqrt{\lambda_n} x$ where k_n is an arbitrary constant.

- a) Determine the normalized eigenfunctions of the boundary value problem. [6]
- b) Expand the function

 $f(x) = x, \quad 0 \le x \le 1$

in terms of the normalized eigenfunctions $\phi_n(x)$ of the boundary value problem.

[12]

LIBRARY USE ONLY

1

(ii) Determine whether the boundary value problem

$$y'' + y' + 2y = 0$$
, $y(0) = 0$, $y(1) = 0$

is self-adjoint.

[7]

- 3 (i) Solve the nonhomogeneous problem by the method of eigenfunction expansion $y''+2y=-1+\left|1-2x\right|, y(0)=0, y(1)=0.$ [8]
 - (ii) Consider the nonhomogeneous initial-boundary value problem

$$u_t = u_{xx} + 1 - |1 - 2x|, \ u(0,t) = 0, \ u(1,t) = 0, \ u(x,0) = 0.$$

Use the eigenfunction expansion method to solve this problem.

[17]

SECTION B:

- 4 (i) Let $y = 1 + x^2$, where x and y are functions of an independent variable t.
 - a) Calculate $\delta \frac{dy}{dx}$ and $\frac{d}{dx} \delta y$ where $x = \frac{1}{t}$ and $\delta x = \varepsilon t^2$. [7]
 - b) Verify the validity of the equation

$$\delta \frac{dy}{dx} = \frac{d}{dx} \delta y - \frac{dy}{dx} \frac{d}{dx} \delta x$$

in this case.

[5]

[7]

(ii) If l is not preassigned, show that the extremals corresponding to the problem

$$\delta \int y'^2 dx = 0; \quad y(0) = 2, \quad y(l) = \sin l$$

are of the form $y = 2 + 2x\cos l$, where *l* satisfies the transcendental equation $2 + 2l\cos l - \sin l = 0$. [13]

- 5 (i) Find the geodesic on the surface of a right circular cone by using spherical coordinates with $ds^2 = dr^2 + r^2 \sin^2 \alpha d\theta^2$. [15]
 - (ii) a) Show that the extremals of the problem

$$\delta \int_{x_1}^{\pi_2} \left[p(x) y^{12} - q(x) y^2 \right] dx = 0, \quad \int_{x_1}^{\pi_2} r(x) y^2 dx = 1,$$

where $y(x_1)$ and $y(x_2)$ are prescribed, are solutions of the equation

$$(py')'+(q+\lambda r)y=0,$$

where λ is a constant.

b) Show that the associated natural boundary conditions are of the form $[py'\delta y]_{x_1}^{x_2} = 0$,

so that the same result follows if py' is required to vanish at an end point where y is not prescribed. [3]

(i) Consider the boundary value problem

$$y'' = F(x)$$
 ; $y(0) = 0$, $y(1) = 0$.

a) Show that

$$y(x) = \int_0^x (x-t)F(t)dt - x \int_0^x (1-t)F(t)dt.$$
 [9]

b) Show that the integral form of the solution y(x) given in (i) above can be written in the form

$$y(x) = \int K(x,t)F(t)dt$$

where K(x,t) is a kernel.

[6]

What do we call the integral equation obtained?

[1]

[9]

(ii) For the initial value problem

$$y''+xy=1$$

$$y(0)=y^{\dagger}(0)=0$$

show that, if y(x) satisfies the initial value problem, then y also satisfies the

$$y(x) = \int_0^x t(t-x)y(t)dt + \frac{x^2}{2}.$$
 What do we call this integral equation?

[1]

- (i) Determine p(x) and q(x) in such a way that the equation

$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

i) Determine
$$p(x)$$
 and $q(x)$ in such a way that the expression
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0,$$
 is equivalent to the equation
$$L[y] = \frac{d}{dx} \left(p \frac{dy}{dx} \right) qy = 0.$$

[8]

- (ii) a) Derive Abel's formula given that u = u(x) and v = v(x) are functions of x satisfying the equation L[y] = 0 in their intervals of definition. [4]
 - b) Verify that u = x and $v = x^2$ are linearly independent solutions of the equation of part (i). What is the value of the constant A in the Abel's
- (iii) Show that, if we take $u(x) = a_1x + a_2x^2$ and $v(x) = b_1x + b_2x^2$, then

 $A = a_1 b_2 - a_2 b_1.$

* LICHARY LOC WILLY