NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

MAPH 5236 - GEOPHYSICAL INVERSE THEORY
MSc IN GEOPHYSIC I:
MAY 2006
DURATION: 4 HOURS

ANSWER ALL QUESTIONS

1. Explain clearly, the terms;
(a) expectation value,
(b) variance,
(c) bias and
(d) mean - squared error.
2. Given two matrices $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -3 & -2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}0 & 6 \\ 1 & 1\end{array}\right]$
(i) Show that $(A B)^{T}=B^{T} A^{T}$ and that
(ii) $\quad(A B)_{i j} \neq(B A)_{i j}$
(iii) Calculate the eigen vectors for matrix A and determine the eigen values for matrix B.
3. (a) (i) What do you understand by the term "singular value decomposition" (SVD)?
(ii) Given a matrix $\mathrm{C}=\left[\begin{array}{ll}4 & 3 \\ 4 & 5\end{array}\right]$, determine the SVD for C.
(b) Determine the column space and the null space of the two matrices.

$$
X=\left[\begin{array}{rr}
1 & -1 \tag{2}\\
0 & 0
\end{array}\right] \text { and } Y=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

(c) Show that $\mathrm{B}=\left(A^{T} A\right)^{-1} A^{T}$ is a left inverse and $\mathrm{C}=A^{T}\left(A A^{T}\right)^{-1}$ is a right inverse of a matrix A, provided that $A A^{T}$ and $A^{T} A$ are invertible?
When are $A^{T} A$ and $A A^{T}$ invertible?
4. Given a matrix $\mathrm{G}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, and that the trace of this matrix is $a+d$ and the determinant is $a d-c b$, show by direct calculation that the product of the eigen values is equal to the determinant and the sum of the eigen values is equal to the trace.
5. (a) Calculate the SVD of the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]$ directly by computing the eigen vectors of $A^{T} A$ and $A A^{T}$. Show that the pseudo inverse solution to the linear system $A x=y$ where $y=(1,2,1)^{T}$ is given by averaging the equations.
(b) Given the matrix $B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$,
(i) determine the generalized inverse of matrix B,
(ii) determine the resolution matrix of B, and
(iii) show that $B^{T} B+\lambda I$ is always an invertible matrix.
6. Given a model,

$$
d_{i}=m_{1}+m_{2} x_{i}+m_{3} y_{i}
$$

calculate the least squares solution for

$$
\begin{align*}
& \mathrm{d}=[15,0,19,18,18,5,-10,-7], \\
& \mathrm{x}=[2,1,4,5,3,-2,-1,-4], \\
& \mathrm{y}=[4,-2,3,1,4,5,-4,2] \\
& \mathrm{m}_{1}=1, \mathrm{~m}_{2}=3 \text { and } \mathrm{m}_{3}=2 . \tag{10}
\end{align*}
$$

7. A wheel has four numbers on it: $1,2,3$, and 4 . The even numbers are white while the odd ones are black. When the wheel is span twice, the following associated sample space is obtained:

$$
\begin{gathered}
{[(1,1),(1,2),(1,3),(1,4)]} \\
{[(2,1),(2,2),(2,3),(2,4)]} \\
{[(3,1),(3,2),(3,3),(3,4)]} \\
{[(4,1),(4,2),(4,3),(4,4)]}
\end{gathered}
$$

Suppose A is the event that the first number is white and B is that the second event is white:
(i) what is the probability $\mathrm{P}(\mathrm{AB})$, that both numbers are white?
8. Given a set of values $A=\left(a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots . a_{n}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}, \ldots \ldots b_{n}\right)$; write a short program in Fortran language that will read both A and B from two given files A and B, calculate the sum of the squares of A and B , and determine the co - variance of the data. Assume n runs from 1 to 60. The output should tabulate the values of A, B and the sum of the squares as well as give the value of the co-variance at the end.

