NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

MAPH 5236 - GEOPHYSICAL INVERSE THEORY

MSc IN GEOPHYSIC I: MAY 2006 DURATION: 4 HOURS

ANSWER ALL QUESTIONS				
1.	Expla: (a) (b) (c) (d)	in clearly, the terms; expectation value, variance, bias and mean – squared error.	[3] [3] [3] [3]	
2.	Given	en two matrices $A = \begin{bmatrix} 1 & 2 \\ -3 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 6 \\ 1 & 1 \end{bmatrix}$		
	(i)	Show that $(AB)^T = B^T A^T$ and that	[2]	
	(ii)	$(AB)_{ij} \neq (BA)_{ij}$	[2]	
	(iii)	Calculate the eigen vectors for matrix A and determine the eigen values for matrix B. [3]	or , [3]	
3.	(a)	(i) What do you understand by the term "singular value decomposition (SVD)?	on" [2]	
		(ii) Given a matrix $C = \begin{bmatrix} 4 & 3 \\ 4 & 5 \end{bmatrix}$, determine the SVD for C.	[10]	
	(b)	Determine the column space and the null space of the two matrices.		
		$\mathbf{X} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \text{ and } \mathbf{Y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$ [2], [2]; [2]	[2], [2]; [2], [2]	
	(c)	(c) Show that $B = (A^T A)^{-1} A^T$ is a left inverse and $C = A^T (A A^T)^{-1}$ is a right inverse of		
		a matrix A, provided that AA^{T} and $A^{T}A$ are invertible? When are $A^{T}A$ and AA^{T} invertible?	[4] [1]	

4. Given a matrix $G = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, and that the trace of this matrix is a + d and the determinant is ad - cb, show by direct calculation that the product of the eigen values is equal to the determinant and the sum of the eigen values is equal to the trace. [8]

5. (a) Calculate the SVD of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ directly by computing the

eigen vectors of $A^{T}A$ and AA^{T} . Show that the pseudo inverse solution to the linear system Ax = y where $y = (1, 2, 1)^{T}$ is given by averaging the equations. [9]

(b) Given the matrix
$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,

(i)	determine the generalized inverse of matrix B,	[5]
(ii)	determine the resolution matrix of B, and	[5]
(iii)	show that $B^T B + \lambda I$ is always an invertible matrix.	[3]

6. Given a model,

 $d_{i} = m_{1} + m_{2}x_{i} + m_{3}y_{i},$ calculate the least squares solution for d = [15, 0, 19, 18, 18, 5, -10, -7],x = [2, 1, 4, 5, 3, -2, -1, -4],y = [4, -2, 3, 1, 4, 5, -4, 2], $m_{1} = 1, m_{2} = 3 \text{ and } m_{3} = 2.$ [10]

7. A wheel has four numbers on it: 1, 2, 3, and 4. The even numbers are white while the odd ones are black. When the wheel is span twice, the following associated sample space is obtained:

[(1,1),(1,2),(1,3),(1,4)][(2,1),(2,2),(2,3),(2,4)][(3,1),(3,2),(3,3),(3,4)][(4,1),(4,2),(4,3),(4,4)]

Suppose A is the event that the first number is white and B is that the second event is white:

(i) what is the probability P(AB), that both numbers are white? [2]

(ii) Calculate the conditional probability, P(B|A).

8.

Given a set of values $A = (a_1, a_2, a_3, \dots, a_n)$ and $B = (b_1, b_2, b_3, \dots, b_n)$; write a short program in Fortran language that will read both A and B from two given files A and B, calculate the sum of the squares of A and B, and determine the co – variance of the data. Assume n runs from 1 to 60. The output should tabulate the values of A, B and the sum of the squares as well as give the value of the co-variance at the end. [8]

[3]

END OF EXAMINATION

3