NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

MAPH 5239 – REFRACTIONAL AND REFLECTIONAL SEISMIC METHODS

MSc GEOPHYSICS PART I

DURATION: 4 HOURS

ANSWER <u>ALL</u> QUESTIONS.

1.	(a)	List five areas of application of the refractional seismic method accompanied by a one sentence comment on each application. [5]
	(b)	Distinguish with the aid of a diagram between the terms 'cross-over distance' and 'critical distance' in the case of a single horizontal interface at depth h between two beds with different elastic properties. [7]
	(c)	Explain with the aid of diagrams the <i>Time – depth</i> method for the interpretation of seismic refraction data for the case of a single horizontal refracting horizon. [6]
	(d)	Show that for (c) above the intercept time t_i is given by:
		$t_i = z \cos \theta_c / v_1$ where the symbols have their usual meanings. [7]
2.	(a)	Draw a clear diagram and write down an expression for Snell's law for seismic waves refracted/reflected at an interface at which conversion occurs. Under what condition will a plane wave suffer no conversion at a plane interface? [5]
	(b)	For the case of a wave critically refracted at an interface dipping at an angle α to the horizontal:
		 (i) draw a time – distance graph; [4] (ii) derive the expression for the travel time of the head wave from the source to a receiver a distance x away. [6]
	(c)	Use the result from (b) above to find the true velocity of the bottom layer and its dipping angle. Derive the expressions for both. [10]
3.	(a)	Define the terms <i>stress</i> and <i>strain</i> . Express the stress and strain related by each of the following elastic constants:

		(i) (iii)	Young rigidity	g's modulus y modulus		(ii) (iv)	Poisson consta bulk modulus	nt [7]		
	(b)	Derive an exact expression for <i>normal moveout</i> (NMO) in terms of offset; two-way time and the velocity of a homogeneous layer overlying a horizontal reflector.								
		 What is the purpose of the NMO correction as applied to (i) single fold continuous coverage; and (ii) multiple fold CDP data? 								
	(c)	Why a	re geop	hone arrays	s used in seism	ic reflection	n prospecting?	[4]		
4.	Write explanatory notes on the following topics:									
	(a)	Groun	sion in refle	ection records; [
	(b)	CDP techniques – its advantages and disadvantages; [5								
	(c)	d to reflection se	eismic [5]							
5.	(a)	Explain the $t^2 - x^2$ method for measuring the seismic velocities of two or homogeneous layers separated by horizontal interfaces. State the assumption and approximations required. Define the terms <i>RMS velocity</i> and <i>interval</i> <i>velocity</i> .								
	(b) A $t^2 - x^2$ analysis gives the following values for horizons A, B and C:									
		<u>horizo</u>	<u>n</u>	tw	o-way time (s)		RMS velocity	<u>(m/s)</u>		
		A B C			2.1 2.6 3.3		2900 3200 3700			
	Find the interval velocity for AB and BC.									

END OF EXAMINATION