WHOLE STATE IN

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 1201 - WAVES AND OPTICS I

BSC HONOURS PART I: MAY 2002

DURATION: 3 HOURS

ANSWER <u>ALL</u> QUESTIONS IN SECTION A AND ANY <u>THREE</u> QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

Atomic mass of oxygen Atomic mass of hydrogen Speed of sound in air

= 16 *a.m.u.*

= 1 a.m.u. = 341 ms⁻¹

l a. m. u.

1.66 x 10⁻²⁷ kg

SECTION A

- 1. (a) Two identical masses of two pendula are coupled by a weightless spring of spring constant k. The system is set into vibrational motion along the line of the spring.
 - (i) State the possible normal modes of vibration for the system and [2]
 - (ii) write the equations of motion for each mass.

[2]

- (b) Illustrate graphically the difference between (a) linear restoring force (b) non-linear 'hard' spring (c) non-linear 'soft' spring.
- [4]
- (c) Distinguish between 'phase velocity' and 'group velocity' in wave motion.
 Include a mathematical expression for each in your answer. [4]
- (d) Show that $y = y_m \sin(kx wt)$ may be written in the alternative forms

$$y = y_m \sin k(x - vt),$$

$$y = y_m \sin \left[2\pi (x - vt) / \lambda \right]$$

$$y = y_m \sin w(x/v - t)$$

$$y = y_{\rm m} \sin 2\pi (x/\lambda - t/T)$$

[4]

'LIBRARY USC

WIGHALL STREET

- Explain the term superposition. Give at least two real life examples (e) where superposition occurs. Under what conditions does the [4] principle of superposition fail?
- Express in dB the difference in the intensity of two sound waves, if the pressure (f) amplitude of one is twice that of the other.
- State one application of ultrasound in medical physics. Give merits and demerits (g) of ultrasound over x-rays.
- Explain the conditions under which constructive interference between two waves (h) of the same frequency w can occur. Explain your answer.
- Is Young's experiment an interference experiment or a diffraction experiment? (i) Explain.
- Explain what is meant by plane polarised light and briefly describe two methods (j) by which it can be produced.

SECTION B

Consider a linear array of 2N particles of alternating masses m₁ and m₂. 2.

The transverse displacement of the p^{th} particle is labeled y_p . We can label all p values with the index r, 1,r,N, by setting p=2r for even values of p and p=2r-1 for odd values of p.

The equations of motion for the 2rth and 2r+1th particles are

$$m_2\ddot{y}_{2r} + \frac{T}{1}(y_{2r} - y_{2r-1}) - \frac{T}{1}(y_{2r+1} - y_{2r}) = 0$$

$$m_1 \ddot{y}_{2r+1} + \frac{T}{1} (y_{2r+1} - y_{2r}) - \frac{T}{1} (y_{2r+2} - y_{2r+1}) = 0$$

Assume that each displacement is of the form $y_p=A_p\cos(\omega t)$.

'LIBRARY U.

(a) Show that the equations of motion together with the solutions for y_p place the following restrictions on the amplitudes A_p

$$\frac{A_{2r+1} + A_{2r-1}}{A_{2r}} = \frac{2\omega_{02}^2 - \omega^2}{\omega_{02}^2}$$

and

$$\frac{A_{2r+2} + A_{2r}}{A_{2r+1}} = \frac{2\omega_{01}^2 - \omega^2}{\omega_{01}^2}$$
 [8]

with $\omega_{01}^2 = T/(m_1 l)$ and $\omega_{02}^2 = T/(m_2 l)$.

(b) If the amplitudes A_{2r} and A_{2r+1} can be written as

 $A_{2r} = C\sin(2r\theta)$

_Þ

 $A_{2r+1} = D\sin((2r+1)\theta),$

find the allowed values of θ

[4]

[8]

[2]

[5]

(c) Using the amplitudes in b) and the relationships from a) show that the mode frequencies can be determined from the expressions

$$(2\omega_{02}^{2} - \omega^{2})C - 2\omega_{02}^{2} \cos\left(\frac{n\pi}{2N+1}\right)D = 0$$
$$-2\omega_{01}^{2} \cos\left(\frac{n\pi}{2N+1}\right)C + (2\omega_{01}^{2} - \omega^{2})D = 0$$

- 3. (a) Write down the equation governing the propagation of a longitudinal wave in a gaseous column, explaining the notations used therein.
 - (ii) Show that the pressure variations also obey the wave equation.
 - (b) Sound travels through gases with speed $c = (B/\rho)^{1/2}$, where B is the Bulk modulus of the gaseous system and ρ is its density. Compare the velocities of sound propagation at 0°C in oxygen and in hydrogen. [NOTE: Consider the process to be adiabatic with $\gamma = Cp/Cv = 1.40$ for both the gases]

· LIBRARY USE COLT

- (c) Two car sirens C and D each have a frequency of 600Hz. C is moving to the left away from D with a velocity of 80km/h, whilst D is stationary. An observer is between the two sirens, moving to the left with velocity 10 m/s.
 - (i) What frequency does the observer hear from siren C? [2]
 - (ii) What frequency does the observer hear from siren D? [2]
 - (iii) What is the beat frequency? [2]
- 4. (a) Considering a 2D wave in an environment of rigid boundaries, explain the principle of wave-guides.
 - (b) Explain briefly how the principle of wave guide is used in optical fibres. Discuss the process by which light is bent around corners in a fibre. [6]
 - (c) Mention two advantages and two disadvantages of the use of optical fibres. Give two applications of optical fibre. [8]
- 5. Explain the formation of Newton's rings and comment on the colour pattern of the fringes when white light is used. [5]

Figure 1 shows a lens of radius of curvature R resting on a glass plate and illuminated from above by light of wavelength λ . Circular interference fringes appear.

- (a) Find the radii of the circular interference maxima assuming that r/R << 1. [5]
- (b) The lens in the Figure 1 is illuminated with sodium light incident normally; if the diameter of the tenth black ring is 1.5cm, find the curvature of the lens surface(wavelength = 589 nm).

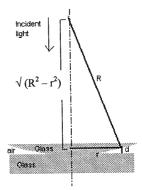


Figure 1

'LIBRARY USE ONLY"

[6]

[5]

	(c)	Explain what is meant by Newton's scale of colours?	[5]
6.	(a)	Explain and illustrate the difference between Fresnel and Fraunhofer diffractions.	[6]
	(b)	A slit of width a is illuminated by white light. (i) For what value of a , will the first minimum for red light ($\lambda = 650$ nm) fall at $\theta = 30^{\circ}$.	[3]
		(ii) What is the ratio of the slit width to wavelength for this case?	[3]
	(c)	In (b) what is the wavelength λ of the light whose first diffraction maximum (excluding the central maximum) falls at $\theta=30^{\circ}$, thus coinciding with the minimum for the red light?	first [4]
	(d)	What requirements must be met for the central maximum of the envelope of the double slit Fraunhofer pattern to contain exactly eleven fringes?	[4]

- END OF PAPER -

'LIBRARY DEE JULY