NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHSYICS DEPARTMENT

SPH 1201 – WAVES AND OPTICS

BSc HONOURS PART I: DECEMBER 2002 DURATION: 3 HOURS

ANSWER <u>ALL</u> PARTS OF QUESTION 1-IN SECTION A AND ANY <u>THREE</u> QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B 60 MARKS

> Speed of sound (at 20°C) Speed of Electromagnetic wave

343 m/s $3.0 \times 10^8 \text{ m/s}$

SECTION A

- 1. (a) Give an expression for the total energy in a coupled pendulum and define all the quantities and terms involved. [6]
 - (b) A certain bat produces a sound wave with wavelength of 34 mm. Can a human being hear this sound? Explain. [4]
 - (c) Give the importance of Fourier analysis in a wave motion. Include a graphical illustration. [5]
 - (d) A plane sinusoidal acoustic wave falls normally on a quiet air-water surface. Assuming no energy losses at the boundary, find:
 - (i) the sound power reflection coefficient and . [2]
 - (ii) the sound power transmission coefficient [2]

(e) The electric field of a plane electromagnetic wave is given as:

$$E_{x} = 0$$

$$E_{y} = 0.5 \cos \left[2\pi \times 10^{8} \left(t - \frac{x}{c} \right) \right] \qquad \frac{N}{c}$$

$$E_{z} = 0$$

What is the wavelength and the direction of propagation of this wave? Explain.

[5]

- (f) Explain how total internal reflection (TIR) is applied in optical fibres. Give two conditions necessary for TIR to occur. [5]
- (g) Illustrate graphically the difference between, non-dispersive, normal dispersive and anomalous dispersive, media. [5]
- (h) Comment on the phase difference between successive fringes in Fraunhoffer and Fresnel's diffraction patterns. [4]
- (i) What is the difference between randomly polarised light and plane polarised light? [2]

SECTION B

- 2. A H₂O molecule can be modelled as a system consisting of a central mass, m_2 , (O¹⁶ atom) connected by springs on either side to masses, m_1 and m_3 (H¹ atoms).
 - (a) Construct and solve the equations of motion for each of the masses for the two normal modes in which the masses oscillate along the line joining them. [12]
 - (b) Using the fact that $m_1 = m_3 = 1$ amu and $m_2 = 16$ amu, determine the ratio of frequencies of the two modes. [6]
- 3. (a) Comment briefly on the effect of a symmetric non-linear return force on the vibrational motion of a free undamped oscillator. [5]
 - (b) A system shown in the figure is set into motion under the action of a driving force, $F_0 \cos \omega \alpha$. Derive the equation of motion for the system given that the. tension in the string is $T = T_0 + s(L \alpha)$ [12]

(c) By assuming a first approximation solution of $x_1 = A \cos wt$, find the second approximation solution. [5]

[NOTE:
$$\cos^3 \omega t = \frac{3}{4} \cos \omega t + \frac{1}{4} \cos 3\omega t$$
]

2

4.	(a)	Write down the wave equation governing the propagation of a disturbance along a wave guide. Define the terms appearing in this equation. [3]	
	(b)	The displacement of the waves on a waveguide of width, b is given by $z = A \sin \left[\omega t - (k_1 x + k_2 y) \right] + A_2 \sin \left[\omega t - (k_1 x - k_2 y) \right]$	
		with boundary conditions, $z = 0$ at $y = 0$ and at $y = b$. Show that $z = -2A_1 \sin k_2 y \cos(\omega t - k_1 x)$, and determine the expression for k_2 .	
		Explain the resultant equation, including how the sine term affects the amplitude of the wave. [6]	
	(c)	Show that the phase and group velocities for the equation obtained in part (b) (1)	
		are given by $V_p = \left(\frac{k}{k_1}\right)V$ and $V_g = \left(\frac{k_1}{k}\right)V$ respectively,	
		where V is the velocity of light. [6]	
	(d)	Explain how the waveguide acts as a frequency filter. [5]	
5.	(a)	Explain how diffraction phenomena are used in distinguishing two distant stars that are at small angular separation. In your answer include an explanation of Rayleigh's criterion. [8]	
	(b)	(i) What is a diffraction grating? [2]	
		 (ii) A parallel monochromatic beam of light is incident normally on a diffraction grating. Under what conditions will a maximum on a distant screen be observed? 	
		(iii) What pattern is observed when the interference factor (due to double	
		diffraction from a single slit)? Explain. [5]	
6.	(a)	(i) Define the term random phase difference. [3]	
		(ii) In which ranges of the electromagnetic wave is polarisation readily observed? [3]	
	(b)	How is an electromagnetic wave affected	
		(1) when it is transmitted through a polaroid and [6]	
		(ii) when it is transmitted through two crossed polarising sheets? [4]	
	(c)	Two polarising sheets are set such that the intensity of the transmitted light is a maximum. Through what angle must either sheet be turned if the intensity is to drop by one half? [4]	
		- END OF EXAMINATION -	