# NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY 

# APPLIED PHYSICS DEPARTMENT 

SPH 1201 - WAVES AND OPTICS

BSc HONOURS PART I: MAY 2006 DURATION: 3 HOURS
ANSWER ALL PARTS OF SECTION A AND ANY THREE QUESTIONS IN SECTION B.
SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS

| Atomic mass of oxygen | $=$ | $16 \mathrm{a} . \mathrm{m} \cdot \mathrm{u}$ |
| :--- | :--- | :--- |
| Atomic mass of hydrogen | $=$ | $1 \mathrm{a} \cdot \mathrm{m} \cdot \mathrm{u}$ |
| Speed of sound in air | $=$ | $341 \mathrm{~ms}^{-1}$ |
| $1 \mathrm{a} . \mathrm{m} \cdot \mathrm{u}$ | $=$ | $1.66 \times 10^{-27} \mathrm{~kg}$ |

## SECTION A

1. (a) Define the following terms as used in wave motion:
(i) particle velocity,
(ii) phase velocity,
(iii) group velocity.
(b) (i) A simple harmonic oscillator has a period $4 \pi$. It passes through a point 0.38 m away from origin O , with velocity $3.8 \mathrm{~ms}^{-1}$. How much time elapses before it passes through this point again?
(ii) The atoms of a solid at room temperature vibrate at a frequency of about $10^{13} \mathrm{~Hz}$ and with amplitude of $10^{-11} \mathrm{~m}$. If the mass of an atom is $10^{-25} \mathrm{~kg}$ and the motion is approximately simple harmonic, find the maximum kinetic energy, the maximum acceleration of an atom as well as the value of the force constant for the motion.
(c) For a stretched string wave, the relation between the displacement, y , of any string element at position x at a time t is given by

$$
y(x, t)=y_{m} \sin (k x-\omega t) .
$$

Use this relation to define the following quantities:
(i) wave number (k),
(ii) period of oscillation (T).
(d) (i) Explain the difference between infrasound and ultrasound and list one application of each.
(ii) The inter atomic potential energy for a particular crystal is given by:

$$
V_{r}=\frac{e^{2}}{4 \pi \varepsilon_{o} r}\left[\frac{1}{9}\left(\frac{r_{o}}{r}\right)^{8}-1\right]
$$

where all the symbols have their usual meanings. Find an expression for the anticollapse constant for such a crystal in terms of $r_{o}$
(e) Explain the application of total internal reflection in optical fibres.
(f) Give two conditions necessary for total internal reflection to occur.
(g) Given that the speed of sound in a medium is $343 \mathrm{~ms}^{-1}$, what are the fundamental and first order frequencies and their wavelengths for standing waves in a 2 m long closed tube.

## SECTION B

2. (a) (i) Write down the equation governing the propagation of a longitudinal wave in a gaseous column, explaining the notation used.
(ii) Show that the pressure variations also obey the wave equation.
(iii) Show that for the phenomenon of Doppler effect, $f^{\prime}=f\left(1 \pm \frac{V}{v}\right)$ where:
$f \quad$ is the source frequency $f^{\prime} \quad$ is the modified frequency
$V \quad=\left|\left(V_{S} \pm V_{D}\right)\right|, V_{S}$ and $V_{D}$ are source and detector velocities.
$v \quad$ is the wave velocity
for the condition $V_{S}$ and $V_{D}$ are very small compared to $v$.
(b) Two car sirens A and B each have a frequency of 500 Hz . A is moving to the left away from B with a velocity $50 \mathrm{~km} / \mathrm{h}$, whilst B is stationary. An observer is between the two sirens, moving to the left with velocity $=6 \mathrm{~m} / \mathrm{s}$.
(i) what frequency does the observer hear from siren A?
(ii) what frequency does the observer hear from siren B?
(iii) what is the beat frequency?
3. (a) Briefly give the meanings of the following:
(i) linear restoring force,
(ii) non-linear "hard" spring,
(iii) non - linear "soft" spring.

Use a graph for your illustrations.
(b) The system shown below is set into motion under the action of a driving force given by, $F_{o} \cos \omega t$.


Figure 1.
The tension in the string is given by $T=T_{o}+s(L-a)$, where all symbols have their usual meanings. Derive the equation of motion for the system.
(c) By assuming a first approximation solution of $\mathrm{x}_{1}=\mathrm{A} \cos \omega t$, find the second approximation solution.
[NOTE: $\left.\cos ^{3} \omega t=3 / 4 \cos \omega t+1 / 4 \cos 3 \omega t\right]$.
4. (a) Explain the difference between Fresnel and Fraunhofer diffraction.
(b) A slit of width $a$ is illuminated by white light.
(i) For what value of $a$ will the first minimum of red light $(\lambda=650 \mathrm{~nm})$ fall at $\theta=30^{\circ}$ ?
(ii) What is the ratio of the slit width to wavelength for this case?
(c) In (b) what is the wavelength $\lambda$ of the light whose diffraction maximum (excluding the central maximum) falls at $\theta=30^{\circ}$, thus coinciding with the first minimum for red light?
(d) What requirements must be met for the central maximum of the envelope of the double slit Fraunhofer pattern to contain exactly 11 fringes?
5. (a) An interference pattern is observed on a screen placed a distance $d$ from two light sources $S_{1}$ and $S_{2}$ of separation $a$ when monochromatic light of wavelength $\lambda$ is falling normally on the plane of the sources. Describe the observed pattern and state the conditions for constructive/destructive interference.
(b) Show that the intensity of the resultant motion at any point on the screen is given by:

$$
\mathrm{I}=\mathrm{I}_{0} \operatorname{Cos}^{2}(\pi \mathrm{ax} / \lambda \mathrm{d})
$$

where $\mathrm{I}_{0}$ is the intensity of the centre point.
(c) Explain how the Michelson's interferometer can be used to define the metre.
6. The figure below illustrates coupled oscillations of a loaded string.


Figure 2.
$n$ equal masses $(m)$ are spaced at equal distances ( $a$ ),
(i) show that the equation of motion for the $r^{\text {th }}$ mass is given by

$$
\begin{equation*}
\left(\frac{d^{2} y_{r}}{d t^{2}}\right)=\frac{T}{m_{a}}\left(y_{r-1}+y_{r+1}-2 y_{r}\right) \tag{5}
\end{equation*}
$$

(ii) By considering $y_{r}=A r e^{i \omega t}$, show that this equation can be reduced to:
$-A r-1+\left(2-\frac{m a \omega^{2}}{T}\right) A r-A r+1=0$
(iii) By considering appropriate limits show how equation (i) can be used to derive the wave equation.
(iv) Show that the dimensions of $\frac{\rho}{T}$ are similar to those of $\frac{1}{v^{2}}$.

