NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 1201 - WAVES AND OPTICS

BSc HONOURS PART I: MAY 2006 DURATION: 3 HOURS

ANSWER <u>ALL</u> PARTS OF SECTION A AND ANY <u>THREE</u> QUESTIONS IN SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS

=	16 a.m.u
=	1 a.m.u
=	341ms^{-1}
=	1.66 x 10 ⁻²⁷ kg
	= = =

SECTION A

1.	(a)	Define (i)	e the following terms as used in wave motion: particle velocity,	[2]	
		(ii)	phase velocity,	[2]	
		(iii)	group velocity.	[2]	
	(b)	(i)	A simple harmonic oscillator has a period 4π . It passes through a point 0.38m away from origin O, with velocity 3.8ms^{-1} . How much time elapses before it passes through this point again? [3]		
		(ii)	The atoms of a solid at room temperature vibrate at a frequency of 10^{13} Hz and with amplitude of 10^{-11} m. If the mass of an atom is 10^{-11} the motion is approximately simple harmonic, find the maximum k energy, the maximum acceleration of an atom as well as the value force constant for the motion.	about ²⁵ kg and cinetic of the [4]	
	(c)	For a selement	stretched string wave, the relation between the displacement, y, of an ant at position x at a time t is given by $y(x,t) = y_m \sin(kx - \omega t).$	ny string	
		Use th	is relation to define the following quantities:	[3]	
		(1)	wave number (k),	[]]	
		(ii)	period of oscillation (T).	[3]	

- Explain the difference between infrasound and ultrasound and list one (d) (i) application of each. [5]
 - (ii) The inter atomic potential energy for a particular crystal is given by:

$$V_r = \frac{e^2}{4\pi\varepsilon_o r} \left[\frac{1}{9} \left(\frac{r_o}{r} \right)^8 - 1 \right]$$

where all the symbols have their usual meanings. Find an expression for the anticollapse constant for such a crystal in terms of r_{o} [6]

- (e) Explain the application of total internal reflection in optical fibres. [3]
- (f) Give two conditions necessary for total internal reflection to occur. [2]
- Given that the speed of sound in a medium is 343ms⁻¹, what are the fundamental (g) and first order frequencies and their wavelengths for standing waves in a 2m long closed tube [5]

SECTION B

- 2. (a) (i) Write down the equation governing the propagation of a longitudinal wave in a gaseous column, explaining the notation used. [2]
 - (ii) Show that the pressure variations also obey the wave equation. [5]
 - Show that for the phenomenon of Doppler effect, $f' = f\left(1 \pm \frac{V}{v}\right)$ where: (iii)
 - is the source frequency f
 - f'is the modified frequency
 - = $|(V_s \pm V_D)|$, V_s and V_D are source and detector velocities. V
 - V is the wave velocity

for the condition V_S and V_D are very small compared to \mathcal{V} . [7]

- Two car sirens A and B each have a frequency of 500Hz. A is moving to the left (b) away from B with a velocity 50km/h, whilst B is stationary. An observer is between the two sirens, moving to the left with velocity = 6m/s.
 - (i) what frequency does the observer hear from siren A? [2]
 - (ii) what frequency does the observer hear from siren B? [2] [2]
 - what is the beat frequency? (iii)
- 3. Briefly give the meanings of the following: (a)
 - linear restoring force, (i)
 - (ii) non-linear "hard" spring,
 - non linear "soft" spring. (iii)
 - Use a graph for your illustrations.

[5]

(b) The system shown below is set into motion under the action of a driving force given by, $F_o \cos \omega t$.

Figure 1.

The tension in the string is given by $T = T_o + s(L-a)$, where all symbols have their usual meanings. Derive the equation of motion for the system. [10]

(c) By assuming a first approximation solution of $x_1 = A \cos \omega t$, find the second approximation solution. [NOTE: $\cos^3 \omega t = \frac{3}{4} \cos \omega t + \frac{1}{4} \cos 3\omega t$]. [5]

4. (a) Explain the difference between Fresnel and Fraunhofer diffraction. [6]

- (b) A slit of width *a* is illuminated by white light.
 - (i) For what value of *a* will the first minimum of red light ($\lambda = 650nm$) fall at $\theta = 30^{\circ}$? [3]
 - (ii) What is the ratio of the slit width to wavelength for this case? [3]
- (c) In (b) what is the wavelength λ of the light whose diffraction maximum (excluding the central maximum) falls at $\theta = 30^{\circ}$, thus coinciding with the first minimum for red light? [4]
- (d) What requirements must be met for the central maximum of the envelope of the double slit Fraunhofer pattern to contain exactly 11 fringes? [4]
- 5. (a) An interference pattern is observed on a screen placed a distance d from two light sources S_1 and S_2 of separation *a* when monochromatic light of wavelength λ is falling normally on the plane of the sources. Describe the observed pattern and state the conditions for constructive/destructive interference. [6]
 - (b) Show that the intensity of the resultant motion at any point on the screen is given by:

 $I = I_o Cos^2 (\pi a x / \lambda d)$

where I_o is the intensity of the centre point.

[8]

(c) Explain how the Michelson's interferometer can be used to define the metre.

[6]

6. The figure below illustrates coupled oscillations of a loaded string.

Figure 2.

n equal masses (m) are spaced at equal distances (a),

(i) show that the equation of motion for the r^{th} mass is given by

$$\left(\frac{d^2 y_r}{dt^2}\right) = \frac{T}{m_a} \left(y_{r-1} + y_{r+1} - 2y_r\right)$$
[5]

(ii) By considering $y_r = Are^{i\omega t}$, show that this equation can be reduced to:

$$-Ar - 1 + \left(2 - \frac{ma\omega^2}{T}\right)Ar - Ar + 1 = 0$$
[5]

(iii) By considering appropriate limits show how equation (i) can be used to derive the *wave equation.* [7]

(iv) Show that the dimensions of
$$\frac{\rho}{T}$$
 are similar to those of $\frac{1}{v^2}$. [3]

- END OF EXAMINATION -