# NATIONAL UNIVESITY OF SCIENCE AND TECHNOLOGY

## DEPARTMENT OF APPLIED PHYSICS

### **SPH 1202 – ANALOGUE ELECTRONICS**

BSc HONOURS PART I: MAY 2006

**DURATION: 3HOURS** 

ANSWER **ALL** PARTS OF QUESTION **ONE** IN SECTION **A** AND ANY **THREE** QUESTIONS FROM SECTION **B**. SECTION **A** CARRIES 40 MARKS AND SECTION **B** CARRIES 60 MARKS.

SHOW ALL YOUR WORKING STEPS CLEARLY IN ANY CALCULATION.

#### SECTION A

| 1. | (a) | Write down the diode current equation and state the meaning of each             |
|----|-----|---------------------------------------------------------------------------------|
|    |     | symbol used. The reverse saturation current at room temperature is 0.3µA when a |
|    |     | reverse bias is applied to a Germanium diode. Find the value of the current     |
|    |     | flowing in the diode when 0.15V forward bias is applied at room temperature.    |
|    |     | [4]                                                                             |

- (b) Explain what is meant by capacitance of a pn junction. Write down the expression for the dynamic transition capacitance. [6]
- (c) A supply with an output resistance of  $1.5 \Omega$  supplies a full load current of 500mA to a 50 $\Omega$  load.
  - (i) What is the percent voltage regulation?
  - (ii) What is the no load output voltage of the regulator? [4]
- (d) Write down the basic differences between the BJT and FET. Give the characteristics of the JFET defining drain resistance and transconductance.
   [6]
- (e) A load  $R_L = 200\Omega$ , is to be supplied with 75V at 40mA for a full wave rectifier with an L- section filter consisting of L = 10H and C= 10µF. Find the ripple factor for a given frequency, f = 50Hz. [4]
- (f) A tuned oscillator has a resonant frequency of 5MHz. If the value of the capacitance is increased by 50%, calculate the new resonant frequency. [5]
- (g) Differentiate between intrinsic and extrinsic semiconductors. [3]

- (h) Draw the circuit diagram of an inverting integrator and deduce the expression for its output. [6]
- (i) What is the difference between a clipping and a clamping circuit? [2]

#### **SECTION B**

2. (a) Determine the operation of an npn transistor circuit shown below. Sketch the dc load line and show the Q- point. Assume that  $R_B = 390k\Omega$ ,  $\beta = 100$ ;  $V_{CE(sat)} = 0.2V$ ; and  $V_{BE} = 0.7V$ . [10]



Figure 1.

| (b) | Explain the operation of a series voltage regulator. | [6] |
|-----|------------------------------------------------------|-----|
|     |                                                      |     |

(c) State two amplifier – coupling methods giving one advantage and one disadvantage of each method. [4]

| 3. |    | (a) | A common- remitter amplifier uses a voltage source with internal resistance $R_s = 800\Omega$ , and a load resistance $R_L = 1000\Omega$ . The h – parameters are $h_{ie} = 1k\Omega$ ; $h_{re} = 2 \times 10^{-4}$ ; $h_{fe} = 50$ and $h_{oe} = 25 \mu AV^{-1}$ . Calculate; |                     |  |
|----|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
|    |    |     | (i) the current gain, $A_i$ ;                                                                                                                                                                                                                                                  |                     |  |
|    |    |     | (ii) the input resistance, $R_i$ and                                                                                                                                                                                                                                           |                     |  |
|    |    |     | (iii) the voltage gain, $A_v$ .                                                                                                                                                                                                                                                | [6]                 |  |
|    |    | (b) | State the meaning of each of the h- parameters used above.                                                                                                                                                                                                                     | [4]                 |  |
|    |    | (c) | Draw the diagram of a Wien- bridge oscillator and deduce the equation for output frequency.                                                                                                                                                                                    | or its<br>[10]      |  |
| 4. |    | (a) | Draw a diagram of a centre-tapped rectifier and sketch the output voltage response to a 12V r.m.s ac input. Explain why the output has the form it d terms of the operation of the centre tap circuit.                                                                         | in<br>oes in<br>[8] |  |
|    |    | (b) | Deduce an equation for the ripple factor of a full wave capacitor-filter rect<br>stating all the relevant approximations.                                                                                                                                                      | tifier,<br>[8]      |  |
|    |    | (c) | Draw a block diagram of an oscillator and state the conditions necessary f oscillations to take place.                                                                                                                                                                         | or<br>[4]           |  |
| 5. |    | (a) | Design a common-emitter amplifier that delivers 0.5W power to a $100\Omega$ resistor. Use a transistor that has a maximum current rating of 500mA, collector-to-emitter saturation voltage of 0.5 V, breakdown voltage of 40V the common-emitter current gain of 100.          | /, and<br>[10]      |  |
|    |    | (b) | Describe briefly the operation of a JFET.                                                                                                                                                                                                                                      | [4]                 |  |
|    |    | (c) | Draw a biased npn and pnp transistor. Label all the currents and show the direction of flow. How are all the currents of the transistor related?                                                                                                                               | [6]                 |  |
|    | 6. | (a) | <ul> <li>Explain the features of the following filter formats:</li> <li>(i) butterworth,</li> <li>(ii) chebyshev,</li> <li>(iii) Bessel.</li> </ul>                                                                                                                            | [9]                 |  |

- (b) Two voltages + 0.6V and -0.4V, are applied to the two input resistors of a summation amplifier. The respective input resistors are  $400k\Omega$  and  $100k\Omega$ , and the feedback resistor is  $200k\Omega$ . Draw the circuit diagram and then determine the output voltage. [7]
- (c) A transistor amplifier stage comprises a FET, of parameters  $Y_{fs} = 2.2 \text{mAV}^{-1}$  and  $Y_{os} = 20 \mu \text{s}$ , and bias components and coupling capacitors of negligible effect. The total load on the output is  $2k\Omega$ . Determine the voltage gain.