NATIONAL UNIVESITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF APPLIED PHYSICS

SPH 1202 - ANALOGUE ELECTRONICS

ANSWER ALL PARTS OF QUESTION ONE IN SECTION A AND ANY THREE QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

SHOW ALL YOUR WORKING STEPS CLEARLY IN ANY CALCULATION.

SECTION A

1. (a) Write down the diode current equation and state the meaning of each symbol used. The reverse saturation current at room temperature is $0.3 \mu \mathrm{~A}$ when a reverse bias is applied to a Germanium diode. Find the value of the current flowing in the diode when 0.15 V forward bias is applied at room temperature.
(b) Explain what is meant by capacitance of a pn junction. Write down the expression for the dynamic transition capacitance.
(c) A supply with an output resistance of 1.5Ω supplies a full load current of 500 mA to a 50Ω load.
(i) What is the percent voltage regulation?
(ii) What is the no load output voltage of the regulator?
(d) Write down the basic differences between the BJT and FET. Give the characteristics of the JFET defining drain resistance and transconductance.
(e) A load $R_{L}=200 \Omega$, is to be supplied with 75 V at 40 mA for a full wave rectifier with an L - section filter consisting of $\mathrm{L}=10 \mathrm{H}$ and $\mathrm{C}=10 \mu \mathrm{~F}$. Find the ripple factor for a given frequency, $\mathrm{f}=50 \mathrm{~Hz}$.
(f) A tuned oscillator has a resonant frequency of 5 MHz . If the value of the capacitance is increased by 50%, calculate the new resonant frequency.
(g) Differentiate between intrinsic and extrinsic semiconductors.
(h) Draw the circuit diagram of an inverting integrator and deduce the expression for its output.
(i) What is the difference between a clipping and a clamping circuit?

SECTION B

2. (a) Determine the operation of an npn transistor circuit shown below.

Sketch the dc load line and show the Q - point. Assume that $\mathrm{R}_{\mathrm{B}}=390 \mathrm{k} \Omega, \beta=100$; $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=0.2 \mathrm{~V}$; and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.

Figure 1.
(b) Explain the operation of a series voltage regulator.
(c) State two amplifier - coupling methods giving one advantage and one disadvantage of each method.
3. (a) A common- remitter amplifier uses a voltage source with internal resistance $R_{s}=800 \Omega$, and a load resistance $R_{L}=1000 \Omega$. The h - parameters are $\mathrm{h}_{\mathrm{ie}}=1 \mathrm{k} \Omega ; \mathrm{h}_{\mathrm{re}}=2 \times 10^{-4} ; \mathrm{h}_{\mathrm{fe}}=50$ and $\mathrm{h}_{\mathrm{oe}}=25 \mu \mathrm{AV}^{-1}$. Calculate;
(i) the current gain, A_{i};
(ii) the input resistance, R_{i} and
(iii) the voltage gain, A_{v}.
(b) State the meaning of each of the h-parameters used above.
(c) Draw the diagram of a Wien- bridge oscillator and deduce the equation for its output frequency.
4. (a) Draw a diagram of a centre-tapped rectifier and sketch the output voltage in response to a 12 V r.m.s ac input. Explain why the output has the form it does in terms of the operation of the centre tap circuit.
(b) Deduce an equation for the ripple factor of a full wave capacitor-filter rectifier, stating all the relevant approximations.
(c) Draw a block diagram of an oscillator and state the conditions necessary for oscillations to take place.
5. (a) Design a common-emitter amplifier that delivers 0.5 W power to a 100Ω resistor. Use a transistor that has a maximum current rating of 500 mA , collector-to-emitter saturation voltage of 0.5 V , breakdown voltage of 40 V , and the common-emitter current gain of 100 .
(b) Describe briefly the operation of a JFET.
(c) Draw a biased npn and pnp transistor. Label all the currents and show the direction of flow. How are all the currents of the transistor related?
6. (a) Explain the features of the following filter formats:
(i) butterworth,
(ii) chebyshev,
(iii) Bessel.
(b) Two voltages +0.6 V and -0.4 V , are applied to the two input resistors of a summation amplifier. The respective input resistors are $400 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$, and the feedback resistor is $200 \mathrm{k} \Omega$. Draw the circuit diagram and then determine the output voltage.
(c) A transistor amplifier stage comprises a FET, of parameters
$\mathrm{Y}_{\mathrm{fs}}=2.2 \mathrm{mAV}^{-1}$ and $\mathrm{Y}_{\mathrm{os}}=20 \mu \mathrm{~s}$, and bias components and coupling capacitors of negligible effect. The total load on the output is $2 \mathrm{k} \Omega$. Determine the voltage gain.

