NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICSDEPARTMENT

SPH 1209 ENGINEERING MATERIALS SUPLEMENTARY EXAMINATION

BSCHONOURS PART I: MAY 2013

ANSWER <u>ALL</u> PARTS OF QUESTION 1 IN SECTION A AND ANY <u>THREE</u> QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

DURATION: 3 HOURS

SECTION A

1	(a)	Which properties of a material would you consider, if you require them:	
		(i) to be capable of being bent into a fixed shape	[1]
		(ii) to act as an electrical insulator.	[1]
		(iii) to be capable of being used as lining for a tank storing acid	[1]
		(iv) to be capable of not fracturing when small cracks are present.	[1]
	(b)	An alloy contains 85 wt % copper and 15 wt% tin. Calculate the atomic percerelement.	nt of each [5]
	(c)	Define the following terms. (i) Hardenability (ii) Anealling (iii) Hardness	[2] [2] [2]
	(d)	In a Brunel hardness test, a 10 mm diameter ball with a 3 000 kg load resulted in an indentation with a diameter of 4.10 mm. Determine the hardness material.	ss of the [4]
	(e)	The atomic radius of iron is 0.1238 nm. Iron crystallizes as BCC. (i) Calculate the lattice parameter a , of the unit cell.	[4]
		(ii) How many atoms are contained within the BCC unit cell?	[2]
	(f)	 (i) Give two common properties of ceramics. (ii) Choose one property in (i) above and suggest one use of ceramics base property. 	[2] ed on the [3]
	(g)	Why is ductile fracture preferred in most applications?	[5]

	(h)	Why are metals with a body centred cubic closing packing structure more ductile compared to materials like aluminum with a hexagonal close packing structure?	e [5]		
2	(a)	SECTION B (i) Calculate n , the number of atoms per cm ³ for diamond given that the de			
		diamond is 3.5 g/cm^3 .	[4]		
		(ii) Calculate the mean distance between atoms L , for a material with 6×10^2			
	(b)	cm ³ . (i) What are polymers?	[4] [3]		
	(0)	(ii) Define thermopolymers.	[2]		
	(c)	The formula for vinyl acetate is $CH_2CHCO_2CH_3$			
		It forms a polymer by addition polymerisation with an average molecular mass of $4.5 \times$			
		10^4 .			
		(i) What is meant by addition polymerisation?	[2]		
		(ii) Find the degree of polymerisation.	[5]		
3	(a)	Define the following			
		(i) Face centred cubic unit cell	[2]		
		(ii) Body centred cubic unit cell	[2]		
	(b)	The atomic weight of copper is 63.54 and the atomic radius is 0.1276 nm.			
		Copper crystallises as FCC. Calculate the density of copper.	[7]		
	(c)	Why are polycrystalline metals stronger than single crystal ones?	[5]		
	(d)	Describe the bonding in the metals in relation to a common property of metals.	[4]		
4	(a)	(i) The Al-Cu system is an alloy commonly used in the air craft industry. W	hat are		
		its advantages over other materials?	[6]		
		(ii) Name another material that is being used as a substitute for the alloy in the	his		
		industry.	[2]		
	(b)	(i) Define a solid solution.	[2]		
		(ii) Give two properties of a solid solution.	[4]		
	(c)	Why are most alloys generally stronger when compared to their separate constituent			
		elements?	[6]		

- 5 (a) Define the term fatigue. [2]
 (b) Distinguish between fatigue and creep in materials. [4]
 (c) Outline the three stages of fatigue development materials. [12]
 (d) Suggest two methods of minimising the effects of fatigue in materials [2]
- 6 (a) Give an example of a non destructive technique with its application. [4]
 - (b) A tensile test on plastics material gave the results shown in table 1 below during the initial states of the test.

Table 1 Test results on a plastic specimen.

Force (N)	Extension (mm)
0	0
100	0.03
150	0.05
200	0.09
250	0.14
300	0.20
400	0.37
500	0.61

The test piece had a cross sectional area of 50 mm² and a gauge length of 50 mm.

- (i) Plot the force /extension graph for the material over the range of the readings given. [6]
- (ii) Determine the tangent modulus at strain rate 0.2% [5]
- (iii) Determine the secant modulus at strain rate 0.5% [5]

END OF EXAM