NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 1209 ENGINEERING MATERIALS FINAL EXAMINATION

BSC HONOURS PART I: APRIL 2014

1

DURATION: 3 HOURS

ANSWER <u>ALL</u> QUESTIONS IN <u>SECTION A</u> AND ANY <u>THREE</u> QUESTIONS IN <u>SECTION B</u>. SECTION A CARRIES<u>40 MARKS</u> WHILE EACH QUESTION IN SECTION B CARRIES <u>20</u> MARKS.

SECTION A

(a)	Name and explain the significance of each of the four quantum numbers that are used configuration of electrons in atoms.	1 in the [8]
(b)	What do you understand by Pauli's exclusion principle?	[2]
(c)	Write down all possible values of the 4 quantum numbers for the L shell.	[5]
(d)	(i)For a system of two atoms, sketch a graph that shows the dependence of the attract repulsive and net forces as a function of the inter atomic separation.(ii) Sketch a similar diagram for attractive, repulsive and net potential energy	ive, [4] [4]
(e)	 (i) Using an appropriate sketch for illustration calculate the volume of an FCC unit c terms of the atomic radius R. (ii) Gold has an atomic radius of 0.1442 nm, an FCC crystal structure and an atomic 196.967 g/mol. Compute its density 	ell in [4] weight of [3]
(f)	What is the importance of the ductility of a material?	[4]
(g)	A steel wire 0.55 in cross section area (A) and 10 m long is extended elastically 1.6 a force of 17.24 N. Calculate the modulus of elasticity of steel.	8 mm by [4]
(h)	Give any <i>two</i> objectives of non destructive testing of materials.	[2]

SECTION B

2.	(a)	Define the term ceramics.	[2]
	(b)	Outline the basic structure of silicate ceramics.	[4]
	(c)	Give three mechanical properties of ceramics and give examples of	
		applications where each property is exploited.	[6]
	(d)	What should be considered in the selection of a material in the manufacture	e of a product?
			[8]
3	(a)	Why are most alloys generally stronger when compared to their separate co	onstituent
	(b)	elements? Distinguish between hardness and toughness of a material.	[6] [4]
	(c)	The formula for vinyl acetate is $CH_2 CHCO_2 CH_3$.	
		It forms a polymer by addition polymerization with an average molecular	mass of $4.5 \times$
		10 ⁴ .	
		(i) What is meant by addition polymerization?	[2]
		(ii) Find the degree of polymerization.	[6]
	(d)	Define a composite material.	[2]
4	(a)	Outline the following defects found in solids.	
		(i) Point defects(ii) Linear defects	[3] [3]
	(b)	Why are materials with defects generally stronger than pure materials for the material.	ne same type of [4]
	(c)	(i) Explain the process of annealing.	[6]
		(ii) State four benefits derived from the annealing process.	[4]
5	(a)	Define the term <i>fatigue</i> .	[2]
	(b)	Distinguish between fatigue and creep in materials.	[4]
	(c)	Write short notes on fatigue failure in materials;	
		(i) crack initiation,	[4]
		(ii) crack propagation,	[4]
		(iii) failure in materials.	[4]
	(d)	Suggest two methods of minimizing the effects of fatigue in materials	[2]
		2	

2

- (a) Give any *four* reasons for the need for testing of materials.
 - (b) A tensile test on plastics material gave the results shown in table 1 during the initial states of the test.

[4]

Table 1 Test results on a plastic specimen.

6

Force (N)	Extension (mm)
0	0
100	0.03
150	0.05
200	0.09
250	0.14
300	0.20
400	0.37
500	0.61

The test piece had a cross sectional area of 50 mm^2 and a gauge length of 50 mm.

- (i) Plot the force-extension graph for the material over the range of the readings given. [6]
- (ii) Determine the tangent modulus at strain rate 0.2% [5]
- (iii) Determine the secant modulus at strain rate 0.5% [5]

END OF EXAM

3