NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED PHYSICS DEPARTMENT

SPH 1209 ENGINEERING MATERIALS FINAL EXAMINATION

ANSWER ALL QUESTIONS IN SECTION A AND ANY THREE QUESTIONS IN SECTION B. SECTION A CARRIES40 MARKS WHILE EACH QUESTION IN SECTION B CARRIES 20
MARKS.

SECTION A

(a) Name and explain the significance of each of the four quantum numbers that are used in the configuration of electrons in atoms.
(b) What do you understand by Pauli's exclusion principle?
(c) Write down all possible values of the 4 quantum numbers for the L shell.
(d) (i)For a system of two atoms, sketch a graph that shows the dependence of the attractive, repulsive and net forces as a function of the inter atomic separation.
(ii) Sketch a similar diagram for attractive, repulsive and net potential energy
(e) (i) Using an appropriate sketch for illustration calculate the volume of an FCC unit cell in terms of the atomic radius R .
(ii) Gold has an atomic radius of 0.1442 nm , an FCC crystal structure and an atomic weight of 196.967 g/mol. Compute its density
[3]
(f) What is the importance of the ductility of a material?
(g) A steel wire 0.55 in cross section area (A) and 10 m long is extended elastically 1.68 mm by a force of 17.24 N . Calculate the modulus of elasticity of steel.
(h) Give any two objectives of non destructive testing of materials.

SECTION B

2. (a) Define the term ceramics.
(b) Outline the basic structure of silicate ceramics.
(c) Give three mechanical properties of ceramics and give examples of applications where each property is exploited.
(d) What should be considered in the selection of a material in the manufacture of a product?
(a) Why are most alloys generally stronger when compared to their separate constituent elements?
(b) Distinguish between hardness and toughness of a material.
(c) The formula for vinyl acetate is $\mathrm{CH}_{2} \mathrm{CHCO}_{2} \mathrm{CH}_{3}$.

It forms a polymer by addition polymerization with an average molecular mass of 10^{4}.
(i) What is meant by addition polymerization?
(ii) Find the degree of polymerization.
(d) Define a composite material.
(a) Outline the following defects found in solids.
(i) Point defects
(ii) Linear defects
(b) Why are materials with defects generally stronger than pure materials for the same type of the material.
(c) (i) Explain the process of annealing.
(ii) State four benefits derived from the annealing process.

5 (a) Define the term fatigue.
(b) Distinguish between fatigue and creep in materials.
(c) Write short notes on fatigue failure in materials;
(i) crack initiation,
(ii) crack propagation,
(iii) failure in materials.
(d) Suggest two methods of minimizing the effects of fatigue in materials
(a) Give any four reasons for the need for testing of materials.
(b) A tensile test on plastics material gave the results shown in table 1 during the initial states of the test.

Table 1 Test results on a plastic specimen.

Force (N)	Extension (mm)
0	0
100	0.03
150	0.05
200	0.09
250	0.14
300	0.20
400	0.37
500	0.61

The test piece had a cross sectional area of $50 \mathrm{~mm}^{2}$ and a gauge length of 50 mm .
(i) Plot the force-extension graph for the material over the range of the readings given.
(ii) Determine the tangent modulus at strain rate 0.2%
(iii) Determine the secant modulus at strain rate 0.5\%

